Skip to main content
Log in

Biodegradable polyethylene glycol hydrogels for sustained release and enhanced stability of rhGALNS enzyme

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Mucopolysaccharidosis IVA (Morquio A disease) is a genetic disorder caused by deficiency of N-acetylgalactosamine-6-sulfate-sulfatase (GALNS), leading to accumulation of keratan sulfate and chondroitin-6-sulfate in lysosomes. Many patients become wheelchair-dependent as teens, and their life span is 20–30 years. Currently, enzyme replacement therapy (ERT) is the treatment of choice. Although it alleviates some symptoms, replacing GALNS enzyme poses several challenges including very fast clearance from circulation and instability at 37 °C. These constraints affect frequency and cost of enzyme infusion and ability to reach all tissues. In this study, we developed injectable and biodegradable polyethylene glycol (PEG) hydrogels, loaded with recombinant human GALNS (rhGALNS) to improve enzyme stability and bioavailability, and to sustain release. We established the enzyme’s release profile via bulk release experiments and determined diffusivity using fluorescence correlation spectroscopy. We observed that PEG hydrogels preserved enzyme activity during sustained release for 7 days. In the hydrogel, rhGALNS diffused almost four times slower than in buffer. We further confirmed that the enzyme was active when released from the hydrogels, by measuring its uptake in patient fibroblasts. The developed hydrogel delivery device could overcome current limits of rhGALNS replacement and improve quality of life for Morquio A patients.

Encapsulated GALNS enzyme in a polyethylene glycol hydrogel improves GALNS stability by preserving its activity, and provides sustained release for a period of at least 7 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Neufeld E, Muenzer J. The mucopolysaccharidoses. In: The metabolic and molecular bases of inherited diseases. 8th. ed. New York: McGraw Hill; 2001.

  2. Montaño AM, Tomatsu S, Gottesman GS, Smith M, Orii T, International Morquio A. Registry: clinical manifestation and natural course of Morquio A disease. J Inherit Metab Dis. 2007;30:165–74.

    PubMed  Google Scholar 

  3. Tomatsu S, Montaño A, Oikawa H, Smith M, Barrera L, Chinen Y, et al. Mucopolysaccharidosis type IVA (Morquio A disease): clinical review and current treatment. Curr Pharm Biotechnol. 2011;12:931–45.

    CAS  PubMed  Google Scholar 

  4. Yasuda E, Fushimi K, Suzuki Y, Shimizu K, Takami T, Zustin J, et al. Pathogenesis of Morquio A syndrome: an autopsied case reveals systemic storage disorder. Mol Genet Metab. 2013;109:301–11.

    CAS  PubMed  Google Scholar 

  5. Puckett Y, Mulister H, Montaño AM. Enzyme replacement therapy for mucopolysaccharidosis IVA (Morquio A syndrome): milestones and challenges. Expert Opin Orphan Drugs. 2017;5:741–52.

    CAS  Google Scholar 

  6. Vartanyan A, Montaño AM. Causal therapies in mucopolysaccharidoses: enzyme replacement therapy. J Child Sci. 2018;8:e156–e62.

    Google Scholar 

  7. Masue M, Sukegawa K, Orii T, Hashimoto T. N-acetylgalactosamine-6-sulfate sulfatase in human placenta: purification and characteristics. J Biochem. 1991;110:965–70.

    CAS  PubMed  Google Scholar 

  8. Tomatsu S, Montaño AM, Gutierrez M, Grubb JH, Oikawa H, Dung VC, et al. Characterization and pharmacokinetic study of recombinant human N-acetylgalactosamine-6-sulfate sulfatase. Mol Genet Metab. 2007;91:69–78.

    CAS  PubMed  Google Scholar 

  9. Rivera-Colón Y, Schutsky EK, Kita AZ, Garman SC. The structure of human GALNS reveals the molecular basis for mucopolysaccharidosis IV A. J Mol Biol. 2012;423:736–51.

    PubMed  PubMed Central  Google Scholar 

  10. Hasilik A. The early and late processing of lysosomal enzymes: proteolysis and compartmentation. Experientia. 1992;48:130–51.

    CAS  PubMed  Google Scholar 

  11. Dahms NM, Lobel P, Kornfeld S. Mannose 6-phosphate receptors and lysosomal enzyme targeting. J Biol Chem. 1989;264:12115–8.

    CAS  PubMed  Google Scholar 

  12. Dierks T, Lecca MR, Schmidt B, von Figura K. Conversion of cysteine to formylglycine in eukaryotic sulfatases occurs by a common mechanism in the endoplasmic reticulum. FEBS Lett. 1998;423:61–5.

    CAS  PubMed  Google Scholar 

  13. LeBowitz JH, Grubb JH, Maga JA, Schmiel DH, Vogler C, Sly WS. Glycosylation-independent targeting enhances enzyme delivery to lysosomes and decreases storage in mucopolysaccharidosis type VII mice. Proc Natl Acad Sci U S A. 2004;101:3083–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hendriksz CJ, Burton B, Fleming TR, Harmatz P, Hughes D, Jones SA, et al. Efficacy and safety of enzyme replacement therapy with BMN 110 (elosulfase alfa) for Morquio A syndrome (mucopolysaccharidosis IVA): a phase 3 randomised placebo-controlled study. J Inherit Metab Dis. 2014; 37(6):979–90

  15. Sanford M, Lo JH. Elosulfase alfa: first global approval. Drugs. 2014;74:713–8.

    CAS  PubMed  Google Scholar 

  16. Connock M, Juarez-Garcia A, Frew E, Mans A, Dretzke J, Fry-Smith A, et al. A systematic review of the clinical effectiveness and cost-effectiveness of enzyme replacement therapies for Fabry’s disease and mucopolysaccharidosis type 1. Health Technol Assess. 2006;10:iii–v ix-113.

    PubMed  Google Scholar 

  17. Ponder K. Immune response hinders therapy for lysosomal storage diseases. J Clin Invest. 2008;118:2686–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zustiak SP, Leach JB. Characterization of protein release from hydrolytically degradable poly (ethylene glycol) hydrogels. Biotechnol Bioeng. 2011;108:197–206.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin C-C, Anseth KS. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res. 2009;26:631–43.

    CAS  PubMed  Google Scholar 

  20. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008;60:1638–49.

    CAS  PubMed  Google Scholar 

  21. Varaprasad K, Raghavendra GM, Jayaramudu T, Yallapu MM, Sadiku R. A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng C Mater Biol Appl. 2017;79:958–71.

    CAS  PubMed  Google Scholar 

  22. DeFail AJ, Chu CR, Izzo N, Marra KG. Controlled release of bioactive TGF-β 1 from microspheres embedded within biodegradable hydrogels. Biomaterials. 2006;27:1579–85.

    CAS  PubMed  Google Scholar 

  23. Jain E, Sheth S, Dunn A, Zustiak SP, Sell SA. Sustained release of multicomponent platelet-rich plasma proteins from hydrolytically degradable PEG hydrogels. J Biomed Mater Res A. 2017;105:3304–14.

    CAS  PubMed  Google Scholar 

  24. Ribeiro C, Barrias C, Barbosa M. Calcium phosphate-alginate microspheres as enzyme delivery matrices. Biomaterials. 2004;25:4363–73.

    CAS  PubMed  Google Scholar 

  25. Crotts G, Park TG. Protein delivery from poly (lactic-co-glycolic acid) biodegradable microspheres: release kinetics and stability issues. J Microencapsul. 1998;15:699–713.

    CAS  PubMed  Google Scholar 

  26. Harris JM, Chess RB. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003;2:214–21.

    CAS  PubMed  Google Scholar 

  27. Zustiak SP, Boukari H, Leach JB. Solute diffusion and interactions in cross-linked poly (ethylene glycol) hydrogels studied by fluorescence correlation spectroscopy. Soft Matter. 2010;6:3609–18.

    CAS  Google Scholar 

  28. Van de Wetering P, Metters AT, Schoenmakers RG, Hubbell JA. Poly (ethylene glycol) hydrogels formed by conjugate addition with controllable swelling, degradation, and release of pharmaceutically active proteins. J Control Release. 2005;102:619–27.

    PubMed  Google Scholar 

  29. Liang Y, Coffin MV, Manceva SD, Chichester JA, Jones RM, Kiick KL. Controlled release of an anthrax toxin-neutralizing antibody from hydrolytically degradable polyethylene glycol hydrogels. J Biomed Mater Res A. 2016;104:113–23.

    PubMed  Google Scholar 

  30. Zustiak SP, Leach JB. Hydrolytically degradable poly (ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties. Biomacromolecules. 2010;11:1348–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jain E, Hill L, Canning E, Sell SA, Zustiak SP. Control of gelation, degradation and physical properties of polyethylene glycol hydrogels through the chemical and physical identity of the crosslinker. J Mater Chem B. 2017;5:2679–91.

    CAS  PubMed  Google Scholar 

  32. Schmidt M, Burchard W. Translational diffusion and hydrodynamic radius of unperturbed flexible chains. Macromolecules. 1981;14:210–1.

    CAS  Google Scholar 

  33. Sukegawa K, Nakamura H, Kato Z, Tomatsu S, Montaño AM, Fukao T, et al. Biochemical and structural analysis of missense mutations in N-acetylgalactosamine-6-sulfate sulfatase causing mucopolysaccharidosis IVA phenotypes. Hum Mol Genet. 2000;9:1283–90.

    CAS  PubMed  Google Scholar 

  34. van Diggelen OP, Zhao H, Kleijer WJ, Janse HC, Poorthuis BJ, van Pelt J, et al. A fluorimetric enzyme assay for the diagnosis of Morquio disease type A (MPS IV A). Clin Chim Acta. 1990;187:131–9.

    PubMed  Google Scholar 

  35. Peterson GL. Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. Anal Biochem. 1979;100:201–20.

    CAS  PubMed  Google Scholar 

  36. Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5:23–36.

    CAS  Google Scholar 

  37. Vanderhooft JL, Mann BK, Prestwich GD. Synthesis and characterization of novel thiol-reactive poly(ethylene glycol) cross-linkers for extracellular-matrix-mimetic biomaterials. Biomacromolecules. 2007;8:2883–9.

    CAS  PubMed  Google Scholar 

  38. Magde D, Elson EL, Webb WW. Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers. 1974;13:29–61.

    CAS  PubMed  Google Scholar 

  39. Lutolf M, Hubbell J. Synthesis and physicochemical characterization of end-linked poly (ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules. 2003;4:713–22.

    CAS  PubMed  Google Scholar 

  40. Huang SH, Sheth S, Jain E, Jiang X, Zustiak SP, Yang L. Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation. Opt Express. 2018;26:51–62.

    PubMed  Google Scholar 

  41. Harland RS, Peppas NA. Solute diffusion in swollen membranes. Polym Bull. 1987;18:553–6.

    CAS  Google Scholar 

  42. Kakkis E, Muenzer J, Tiller G, Waber L, Belmont J, Passage M, et al. Enzyme-replacement therapy in mucopolysaccharidosis I. N Engl J Med. 2001;344:182–8.

    CAS  PubMed  Google Scholar 

  43. Harmatz P, Whitley C, Waber L, Pais R, Steiner R, Plecko B, et al. Enzyme replacement therapy in mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). J Pediatr. 2004;144:574–80.

    CAS  PubMed  Google Scholar 

  44. Muenzer J, Lamsa J, Garcia A, Dacosta J, Garcia J, Treco D. Enzyme replacement therapy in mucopolysaccharidosis type II (Hunter syndrome): preliminary report. Acta Paediatr Suppl. 2002;91:98–9.

    CAS  PubMed  Google Scholar 

  45. Muenzer J, Wraith J, Beck M, Giugliani R, Harmatz P, Eng C, et al. A phase II/III clinical study of enzyme replacement therapy with idursulfase in mucopolysaccharidosis II (Hunter syndrome). Genet Med. 2006;8:465–73.

    CAS  PubMed  Google Scholar 

  46. Tomatsu S, Montaño AM, Ohashi A, Gutierrez MA, Oikawa H, Oguma T, et al. Enzyme replacement therapy in a murine model of Morquio A syndrome. Hum Mol Genet. 2007;17:815–24.

    PubMed  Google Scholar 

  47. Hendriksz CJ, Giugliani R, Harmatz P, Mengel E, Guffon N, Valayannopoulos V, et al. Multi-domain impact of elosufase alfa in Morquio A syndrome in the pivotal phase III trial. Mol Genet Metab. 2015;114:178–85.

    CAS  PubMed  Google Scholar 

  48. Leuty R. The 5 highest-priced drugs: BioMarin’s $380,000 latest is not even close to top. San Francisco: Business Times; 2014

  49. Williams S. The 5 most expensive drugs in the world in 2015: The Motley Fool; 2015. https://www.fool.com/investing/highgrowth/2015/08/15/the-5-most-expensive-drugs-in-the-world-in-2015.aspx.

  50. Singh A, Peppas NA. Hydrogels and scaffolds for immunomodulation. Adv Mater. 2014;26:6530–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Eggers DK, Valentine JS. Crowding and hydration effects on protein conformation: a study with sol-gel encapsulated proteins. J Mol Biol. 2001;314:911–22.

    CAS  PubMed  Google Scholar 

  52. Tomatsu S, Montaño AM, Dung VC, Ohashi A, Oikawa H, Oguma T, et al. Enhancement of drug delivery: enzyme-replacement therapy for murine Morquio A syndrome. Mol Ther. 2010;18:1094–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Qiu B, Stefanos S, Ma J, Lalloo A, Perry BA, Leibowitz MJ, et al. A hydrogel prepared by in situ cross-linking of a thiol-containing poly (ethylene glycol)-based copolymer: a new biomaterial for protein drug delivery. Biomaterials. 2003;24:11–8.

    PubMed  Google Scholar 

  54. Kunkel J, Asuri P. Function, structure, and stability of enzymes confined in agarose gels. PLoS One. 2014;9:e86785.

    PubMed  PubMed Central  Google Scholar 

  55. Wang H, Akcora P. Confinement effect on the structure and elasticity of proteins interfacing polymers. Soft Matter. 2017;13:1561–8.

    CAS  PubMed  Google Scholar 

  56. Bhat R, Timasheff SN. Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols. Protein Sci. 1992;1:1133–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 2001;73:121–36.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mike Marcinkowski for editorial assistance and Dr. Nicola Pozzi for access to the FCS instrument used in this study.

Funding

Saint Louis University Department of Pediatrics in association with Cardinal Glennon Foundation provided support. Saahil Sheth was supported by a Barta Graduate Scholarship awarded from Parks College of Engineering, Aviation, and Technology, Saint Louis University.

Author information

Authors and Affiliations

Authors

Contributions

A.M.M and S.P.Z. conceived and designed the study; E.J., M.F., S.P., Q.G., S.S., B.P., and A.M.M. performed experiments; A.M.M. and S.P.Z. supervised the study; and A.M.M. and S.P.Z. wrote the manuscript, with input from all authors.

Corresponding authors

Correspondence to Adriana M. Montaño or Silviya P. Zustiak.

Ethics declarations

Conflict of interest

E.J., A.M.M., and S.P.Z. declare competing financial interests: they have US patent application 16/179,158. The patent covers the underlying concept of the use of hydrogels for lysosomal storage diseases described in the manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, E., Flanagan, M., Sheth, S. et al. Biodegradable polyethylene glycol hydrogels for sustained release and enhanced stability of rhGALNS enzyme. Drug Deliv. and Transl. Res. 10, 1341–1352 (2020). https://doi.org/10.1007/s13346-020-00714-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00714-7

Keywords

Navigation