Skip to main content

Advertisement

Log in

Tuning the PEG surface density of the PEG-PGA enveloped Octaarginine-peptide Nanocomplexes

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

One of the main limitations of protein drugs is their restricted capacity to cross biological barriers. We have previously reported nanostructured complexes of insulin and modified octaarginine (C12-r8), enveloped by a polyethyleneglycol-polyglutamic acid (PEG-PGA) protective shell, and showed their capacity to overcome different barriers associated to the oral modality of administration. The objective of this work was to produce the said nanocomplexes with structurally diverse PEG-PGA shells, i.e. with different chain lengths and PEG substitution degrees, and comparatively analyze their PEG surface density and subsequent impact on their interaction with mucus glycoproteins and Caco-2 cells. The new PEG-PGA enveloped C12-r8-insulin nanocomplexes (ENCPs) exhibited a narrow size distribution (average size of 210–239 nm), a neutral surface charge and a 100% insulin association efficiency (final insulin loading of 16.5–29.6% w/w). Proton nuclear magnetic resonance (1H NMR) analysis indicated the possibility to modulate the PEG density on the ENCPs from 6.7 to 44.5 PEG chains per 100 nm2. This increase in the ENCPs PEG surface density resulted in their reduced interaction with mucins in vitro, while their interaction with Caco-2 cells in vitro remained unaltered. Overall, these data indicate the capacity to tune the surface characteristics of the ENCPS in order to maximize the capacity of these nanocarriers to overcome barriers associated to mucosal surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aguirre TAS, Teijeiro-Osorio D, Rosa M, Coulter IS, Alonso MJ, Brayden DJ. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv Drug Deliv Rev. Elsevier B.V. 2016;106:223–41.

    Article  CAS  Google Scholar 

  2. Lai SK, Wang Y-Y, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–71.

    Article  CAS  PubMed  Google Scholar 

  3. Tobío M, Gref T, Sánchez A, Langer R, Alonso MJ. Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm Res. 1998;15(2):270–5.

    Article  PubMed  Google Scholar 

  4. Tobı́o M, Sánchez A, Vila A, Soriano I, Evora C, Vila-Jato J, et al. The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surfaces B Biointerfaces. 2000;18(3–4):315–23.

    Article  PubMed  Google Scholar 

  5. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM, Sciences H, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(Pt A:28–51.

    Article  CAS  PubMed  Google Scholar 

  6. Suh J, Dawson M, Hanes J. Real-time multiple-particle tracking: applications to drug and gene delivery. Adv Drug Deliv Rev. 2005;57:63–78.

    Article  CAS  PubMed  Google Scholar 

  7. Lai SK, O’Hanlon DE, Harrold S, Man ST, Wang Y-Y, Cone R, et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci. 2007;104(5):1482–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang YY, Lai SK, Suk JS, Pace A, Cone R, Hanes J. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew Chemie - Int Ed. 2008;47(50):9726–9.

    Article  CAS  Google Scholar 

  9. Yang M, Lai SK, Wang Y-Y, Zhong W, Happe C, Zhang M, et al. Biodegradable nanoparticles composed entirely of safe materials that rapidly penetrate human mucus. Angew Chem Int Ed Engl. 2011;50(11):2597–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ensign LM, Tang BC, Wang YY, Tse TA, Hoen T, Cone R, et al. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci Transl Med. 2012;4(138):138ra79.

    Article  PubMed  Google Scholar 

  11. Xu Q, Boylan NJ, Cai S, Miao B, Patel H, Hanes J. Scalable method to produce biodegradable nanoparticles that rapidly penetrate human mucus. J Control Release Elsevier BV. 2013;170(2):279–86.

    Article  CAS  Google Scholar 

  12. Yang M, Yu T, Wang Y-Y, Lai SK, Zeng Q, Miao B, et al. Vaginal delivery of paclitaxel via nanoparticles with non- mucoadhesive surfaces suppresses cervical tumor growth. Adv Heal Mater. 2015;3(7):1044–52.

    Article  CAS  Google Scholar 

  13. Xu Q, Ensign LM, Boylan NJ, Schӧn A, Gong X, Yang J-C, et al. Impact of surface polyethylene glycol (PEG) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano. 2015;9(9):9217–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu T, Chan KWY, Anonuevo A, Song X, Schuster BS, Chattopadhyay S, et al. Liposome-based mucus-penetrating particles (MPP) for mucosal theranostics: demonstration of diamagnetic chemical exchange saturation transfer (diaCEST) magnetic resonance imaging (MRI). Nanomedicine. 2015;11(2):401–5.

    Article  CAS  PubMed  Google Scholar 

  15. Kim AJ, Boylan NJ, Suk JS, Hwangbo M, Yu T, Schuster BS, et al. Use of single-site functionalized PEG-Dendrons to prepare gene vectors that penetrate human mucus barriers. Angew Chem Int Ed Engl. 2013;52(14):3985–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mastorakos P, Zhang C, Berry S, Oh Y, Lee S, Eberhart CG, et al. Highly PEGylated DNA nanoparticles provide uniform and widespread gene transfer in the brain. Adv Healthc Mater. 2015;4(7):1023–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu T, Chisholm J, Choi WJ, Anonuevo A, Pulicare S, Zhong W, et al. Mucus-penetrating Nanosuspensions for enhanced delivery of poorly soluble drugs to mucosal surfaces. Adv Healthc Mater. 2016;5(21):2745–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Y-Y, Lai SK, Suk JS, Pace A, Cone R, Hanes J. Addressing the PEG Mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew Chem Int Ed Engl. 2009;47(50):9726–9.

    Article  CAS  Google Scholar 

  19. Nance E, Timbie K, Miller GW, Song J, Louttit C, Klibanov AL, et al. Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood - brain barrier using MRI-guided focused ultrasound. J Control Release. Elsevier B.V. 2014;189:123–32.

    Article  CAS  Google Scholar 

  20. Maisel K, Reddy M, Xu Q, Chattopadhyay S, Cone R, Ensign LM, et al. Nanoparticles coated with high molecular weight PEG penetrate mucus and provide uniform vaginal and colorectal distribution in vivo. Nanomedicine. 2016;11(11):1337–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lai SK, O’Hanlon DE, Harrold S, Man ST, Wang Y-Y, Cone RA, et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci U S A. 2007;104(5):1482–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schmidt N, Mishra A, Lai GH, Wong GCL. Arginine-rich cell-penetrating peptides. FEBS Lett Federation of European Biochemical Societies. 2010;584(9):1806–13.

    Article  CAS  Google Scholar 

  23. Lai SK, Wang Y-Y, Hida K, Cone R, Hanes J, Langer R. Nanoparticles reveal that human Cervicovaginal mucus is riddled with pores larger than viruses. Proc Natl Acad Sci U S A. 2010;107(2):598–603.

    Article  CAS  PubMed  Google Scholar 

  24. Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev Elsevier BV. 2012;64(6):557–70.

    Article  CAS  Google Scholar 

  25. Yildiz HM, McKelvey CA, Marsac PJ, Carrier RL. Size selectivity of intestinal mucus to diffusing particulates is dependent on surface chemistry and exposure to lipids. J Drug Target 2015;23(7–8):768–74, 768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Song Q, Yao L, Huang M, Hu Q, Lu Q, Wu B, et al. Mechanisms of transcellular transport of wheat germ agglutinin-functionalized polymeric nanoparticles in Caco-2 cells. Biomaterials Elsevier Ltd. 2012;33(28):6769–82.

    Article  CAS  Google Scholar 

  27. Pozzi D, Colapicchioni V, Caracciolo G, Piovesana S, Capriotti AL, Palchetti S, et al. Effect of polyethyleneglycol (PEG) chain length on the bio-nano- interactions between PEGylated lipid nanoparticles and biological fluids: from nanostructure to uptake in cancer cells. Nanoscale. 2014;6(5):2782–92.

    Article  CAS  PubMed  Google Scholar 

  28. Hatakeyama H, Akita H, Harashima H. The Polyethyleneglycol dilemma: advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biol Pharm Bull. 2013;36(6):892–9.

    Article  CAS  PubMed  Google Scholar 

  29. Niu Z, Samaridou E, Jaumain E, Coëne J, Ullio G, Shrestha N, et al. PEG-PGA enveloped Octaarginine-peptide Nanocomplexes: an Oral peptide delivery strategy. J Control Release. 2018;276(C):125–39.

    Article  CAS  PubMed  Google Scholar 

  30. Kamei N, Morishita Mariko M, Kanayama Y, Hasegawa K, Nishimura M, Hayashinaka E, et al. Molecular imaging analysis of intestinal insulin absorption boosted by cell-penetrating peptides by using positron emission tomography. J Control Release [Internet] Elsevier BV. 2010;146(1):16–22. Available from:. https://doi.org/10.1016/j.jconrel.2010.05.004.

    Article  CAS  Google Scholar 

  31. Zhang L, Zhang P, Zhao Q, Zhang Y, Cao L, Luan Y. Doxorubicin-loaded polypeptide nanorods based on electrostatic interactions for cancer therapy. J Colloid Interface Sci [Internet] Elsevier Inc. 2016;464:126–36. Available from:. https://doi.org/10.1016/j.jcis.2015.11.008.

    Article  CAS  Google Scholar 

  32. liang XJ, yu TH, Chen J, pei GZ, Lin L, yan YH, et al. Polyglutamic acid based polyanionic shielding system for polycationic gene carriers. Chinese J Polym Sci English Ed. 2016;34(3):316–23.

    Article  CAS  Google Scholar 

  33. Suk JS, Lai SK, Wang Y-Y, Ensign LM, Zeitlin PL, Boyle MP, et al. The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles. Biomaterials. 2009;30(13):2591–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huckaby JT, Lai SK. PEGylation for enhancing nanoparticle diffusion in mucus. Adv Drug Deliv Rev Elsevier BV. 2017;124:125–39.

    Article  CAS  Google Scholar 

  35. Conejos-Sánchez I, Duro-Castano A, Birke A, Barz M, Vicent MJ. A controlled and versatile NCA polymerization method for the synthesis of polypeptides. Polym Chem. 2013;4(11):3182–6.

    Article  CAS  Google Scholar 

  36. Cong H, Li L, Zheng S. Cylindrical brush copolymer bearing polystyrene-block-poly(ε-caprolactone) diblock side chains: synthesis via a sequential grafting-from polymerization approach and its formation of fibrillar nanophases in epoxy thermosets. Polym (United Kingdom) Elsevier Ltd. 2015;79:99–109.

    CAS  Google Scholar 

  37. Yoo J, Birke A, Kim J, Jang Y, Song SY, Ryu S, et al. Cooperative catechol-functionalized Polypept(o)ide brushes and ag nanoparticles for combination of protein resistance and antimicrobial activity on metal oxide surfaces. Biomacromolecules American Chemical Society. 2018;19(5):1602–13.

    Article  CAS  Google Scholar 

  38. Hrkach JS, Peracchia MT, Domb A, Lotans N, Langer R. Nanotechnology for biomaterials engineering : structural characterization of amphiphilic polymeric nanoparticles by 1H NMR spectroscopy. Biomaterials. 1997;18:27–30.

    Article  CAS  PubMed  Google Scholar 

  39. Heald CR, Stolnik S, Kujawinski KS, De Matteis C, Garnett MC, Illum L, et al. Poly(lactic acid)-poly(ethylene oxide) (PLA-PEG) nanoparticles: NMR studies of the central solidlike PLA core and the liquid PEG corona. Langmuir. 2002;18(9):3669–75.

    Article  CAS  Google Scholar 

  40. Garcia-Fuentes M, Torres D, Martín-Pastor M, Alonso MJ. Application of NMR spectroscopy to the characterization of PEG-stabilized lipid nanoparticles. Langmuir. 2004;20(20):8839–45.

    Article  CAS  PubMed  Google Scholar 

  41. Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, et al. “Stealth” corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surfaces B Biointerfaces. 2000;18(3–4):301–13.

    Article  CAS  PubMed  Google Scholar 

  42. Inchaurraga L, Martín-Arbella N, Zabaleta V, Quincoces G, Peñuelas I, Irache JM. In vivo study of the mucus-permeating properties of PEG-coated nanoparticles following oral administration. Eur J Pharm Biopharm Elsevier BV. 2015;97(December):280–9.

    Article  CAS  Google Scholar 

  43. Perry JL, Reuter KG, Kai MP, Herlihy KP, Jones SW, Luft JC, et al. PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 2012;12(10):5304–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kenworthy AK, Hristova K, Needham D, McIntosh TJ. Range and magnitude of the steric pressure between bilayers containing phospholipids with covalently attached poly(ethylene glycol). Biophys J. 1995;68(5):1921–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alexander S. Adsorption of chain molecules with a polar head a scaling description. J Phys. 1977;38(8):983–7.

    Article  CAS  Google Scholar 

  46. de Gennes PG. Polymers at an interface; a simplified view. Adv Colloid Interf Sci. 1987;27(3–4):189–209.

    Article  Google Scholar 

  47. Sajomsang W, Gonil P, Ruktanonchai UR, Pimpha N, Sramala I, Nuchuchua O, et al. Self-aggregates formation and mucoadhesive property of water-soluble β-cyclodextrin grafted with chitosan. Int J Biol Macromol Elsevier BV. 2011;48(4):589–95.

    Article  CAS  Google Scholar 

  48. Griffiths PC, Cattoz B, Ibrahim MS, Anuonye JC. Probing the interaction of nanoparticles with mucin for drug delivery applications using dynamic light scattering. Eur J Pharm Biopharm Elsevier BV. 2015;97:218–22.

    Article  CAS  Google Scholar 

  49. Vermette P, Meagher L. Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms. Colloids Surfaces B Biointerfaces. 2003;28(2–3):153–98.

    Article  CAS  Google Scholar 

  50. Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102.

    Article  CAS  PubMed  Google Scholar 

  51. Steinmetz NF, Manchester M. PEGylated viral nanoparticles for biomedicine: the impact of PEG chain length on VNP cell interactions in vitro and ex vivo. Biomacromolecules. 2009;10(4):784–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Damodaran VB, Fee CJ, Ruckh T, Popat KC. Conformational studies of covalently grafted poly(ethylene glycol) on modified solid matrices using X-ray photoelectron spectroscopy. Langmuir. 2010;26(10):7299–306.

    Article  CAS  PubMed  Google Scholar 

  53. Nance EA, Woodworth GF, Sailor KA, Shih T-Y, Xu Q, Swaminathan G, et al. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci Transl Med. 2012;4(49):1–18.

    Google Scholar 

  54. Rieger J, Passirani C, Benoit JP, Van Butsele K, Jérôme R, Jérôme C. Synthesis of amphiphilic copolymers of poly(ethylene oxide) and poly(ε-caprolactone) with different architectures, and their role in the preparation of stealthy nanoparticles. Adv Funct Mater. 2006;16(11):1506–14.

    Article  CAS  Google Scholar 

  55. Sant S, Poulin S, Hildgen P. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles. J Biomed Mater Res - Part A. 2008;87(4):885–95.

    Article  CAS  Google Scholar 

  56. Sant S, Thommes M, Hildgen P. Microporous structure and drug release kinetics of polymeric nanoparticles. Langmuir. 2008;24(1):280–7.

    Article  CAS  PubMed  Google Scholar 

  57. Rabanel JM, Faivre J, Tehrani SF, Lalloz A, Hildgen P, Banquy X. Effect of the polymer architecture on the structural and biophysical properties of PEG-PLA nanoparticles. ACS Appl Mater Interfaces. 2015;7(19):10374–85.

    Article  CAS  PubMed  Google Scholar 

  58. El-Andaloussi S, Järver P, Johansson HJ, Langel Ü. Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: a comparative study. Biochem J. 2007;407(2):285–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yuan H, Chen CY, Chai GH, Du YZ, Hu FQ. Improved transport and absorption through gastrointestinal tract by pegylated solid lipid nanoparticles. Mol Pharm. 2013;10(5):1865–73.

    Article  CAS  PubMed  Google Scholar 

  60. Song Q, Wang X, Hu Q, Huang M, Yao L, Qi H, et al. Cellular internalization pathway and transcellular transport of pegylated polyester nanoparticles in Caco-2 cells. Int J Pharm Elsevier BV. 2013;445(1–2):58–68.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the European TRANS-INT Consortium, which received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 281035. We thank the team in Polypeptide Therapeutic Solutions, S.L. and Dr. Amparo Pérez from the Kærtor Foundation for providing insight and expertise that greatly assisted the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria José Alonso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samaridou, E., Kalamidas, N., Santalices, I. et al. Tuning the PEG surface density of the PEG-PGA enveloped Octaarginine-peptide Nanocomplexes. Drug Deliv. and Transl. Res. 10, 241–258 (2020). https://doi.org/10.1007/s13346-019-00678-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-019-00678-3

Keywords

Navigation