Skip to main content

Advertisement

Log in

A novel transdermal nanoethosomal gel of lercanidipine HCl for treatment of hypertension: optimization using Box-Benkhen design, in vitro and in vivo characterization

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

A Correction to this article was published on 12 November 2019

This article has been updated

Abstract

Poor bioavailability of drugs via oral route is the greatest challenge facing drug formulation. To overcome this obstacle, transdermal route was commonly used as an alternative route to improve bioavailability. Lercanidipine HCl (LER) is a vasoselective calcium-channel blocker that has a poor oral bioavailability of 10% due to its hepatic metabolism and low solubility. The main objective of this study was to develop nanoethosomal LER gel for transdermal delivery to increase its skin permeation and promote bioavailability. Nanoethosomes were prepared and optimized using a Box-Behnken design employing ethanol injection method. The design studied the influence of Phospholipon 90G (PL90G), LER, and ethanol concentrations on entrapment efficiency (EE%); vesicle size; % cumulative LER release (CLERR); and cumulative LER permeated per unit area at 24 h Q24 (μg/cm2). The pharmacokinetic parameters of the optimized formulation were determined in rats. Nanoethosomes showed a mean vesicle size between 210.87 and 400.57 nm and EE% ranging from 49.26 to 97.22%. The developed nanoethosomes enhanced % CLERR and Q24 values compared to drug suspension. The experimental parameters of optimized formulation were very close to those calculated by software. The pharmacokinetics study showed three times statistically significant (p < 0.05) enhancement in LER bioavailability following nanoethosomal LER gel transdermal application compared to that of oral LER suspension. Nanoethosomes can be considered as a promising carrier for LER transdermal delivery, thus will be fruitful therapy in hypertension management.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

  • 12 November 2019

    In the original article, there are errors in Tables 2 and 6. Following are the corrected tables.

References

  1. Campbell N, Young ER, Drouin D, Legowski B, Adams MA, Farrell J, et al. A framework for discussion on how to improve prevention, management, and control of hypertension in Canada. Can J Cardiol. 2012;28(3):262–9.

    Article  PubMed  Google Scholar 

  2. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365(9455):217–23.

    Article  PubMed  Google Scholar 

  3. Chonkar AD, Rao JV, Managuli RS, Mutalik S, Dengale S, Jain P, et al. Development of fast dissolving oral films containing lercanidipine HCl nanoparticles in semicrystalline polymeric matrix for enhanced dissolution and ex vivo permeation. Eur J Pharm Biopharm. 2016;103:179–91.

    Article  CAS  PubMed  Google Scholar 

  4. Subhash P, Dinesh B, Ravikumar M. Assessment of Lercanidipine hydrochloride for transdermal delivery: physiochemical, in-vitro and ex-vivo characterization of matrix type Lercanidipine hydrochloride transdermal patches. Int J Pharm Biol Sci. 2012;3:349–65.

    CAS  Google Scholar 

  5. Deshpande PB, Gurram AK, Deshpande A, Shavi GV, Musmade P, Arumugam K, et al. A novel nanoproliposomes of lercanidipine: development, in vitro and preclinical studies to support its effectiveness in hypertension therapy. Life Sci. 2016;162:125–37.

    Article  CAS  PubMed  Google Scholar 

  6. Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M. Enhanced transdermal delivery of an anti-hypertensive agent via nanoethosomes: statistical optimization, characterization and pharmacokinetic assessment. Int J Pharm. 2013;443(1–2):26–38.

    Article  CAS  PubMed  Google Scholar 

  7. Shi J, Wang Y, Luo G. Ligustrazine phosphate ethosomes for treatment of Alzheimer’s disease, in vitro and in animal model studies. AAPS PharmSciTech. 2012;13(2):485–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jain S, Tiwary AK, Sapra B, Jain NK. Formulation and evaluation of ethosomes for transdermal delivery of lamivudine. AAPS PharmSciTech. 2007;8(4):249.

    Article  PubMed Central  Google Scholar 

  9. Song CK, Balakrishnan P, Shim C-K, Chung S-J, Chong S, Kim D-D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Colloids Surf B: Biointerfaces. 2012;92:299–304.

    Article  CAS  PubMed  Google Scholar 

  10. Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM. Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int J Pharm. 2006;322(1–2):60–6.

    Article  CAS  PubMed  Google Scholar 

  11. El-Menshawe SF, Sayed OM, Abou-Taleb HA, El Tellawy N. Skin permeation enhancement of nicotinamide through using fluidization and deformability of positively charged ethosomal vesicles: a new approach for treatment of atopic eczema. J Drug Delivery Sci Technol. 2019;52:687–701.

    Article  CAS  Google Scholar 

  12. Verma P, Pathak K. Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation. Nanomedicine. 2012;8(4):489–96.

    Article  CAS  PubMed  Google Scholar 

  13. Touitou E, Godin B, Dayan N, Weiss C, Piliponsky A, Levi-Schaffer F. Intracellular delivery mediated by an ethosomal carrier. Biomaterials. 2001;22(22):3053–9.

    Article  CAS  PubMed  Google Scholar 

  14. Dubey V, Mishra D, Jain N. Melatonin loaded ethanolic liposomes: physicochemical characterization and enhanced transdermal delivery. Eur J Pharm Biopharm. 2007;67(2):398–405.

    Article  CAS  PubMed  Google Scholar 

  15. Verma P, Pathak K. Therapeutic and cosmeceutical potential of ethosomes: an overview. J Adv Pharm Technol Res. 2010;1(3):274–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. El-Menshawe SF, Ali AA, Halawa AA, El-Din ASS. A novel transdermal nanoethosomal gel of betahistine dihydrochloride for weight gain control: in-vitro and in-vivo characterization. Drug Des Dev Ther. 2017;11:3377.

    Article  CAS  Google Scholar 

  17. Bodade SS, Shaikh KS, Kamble MS, Chaudhari PD. A study on ethosomes as mode for transdermal delivery of an antidiabetic drug. Drug Deliv. 2013;20(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  18. Ramakrishna GA, Manobar S, Bhanudas SR. Ethosomes: carrier for enhanced transdermal drug delivery system circulation. 2014;1:2.

  19. Mishra KK, Kaur CD, Verma S, Sahu AK, Dash DK, Kashyap P, et al. Transethosomes and nanoethosomes: recent approach on transdermal drug delivery system. IntechOpen: Nanomedicines; 2019.

    Google Scholar 

  20. Abdel Messih HA, Ishak RA, Geneidi AS, Mansour S. Nanoethosomes for transdermal delivery of tropisetron HCl: multi-factorial predictive modeling, characterization, and ex vivo skin permeation. Drug Dev Ind Pharm. 2017;43(6):958–71.

    Article  CAS  PubMed  Google Scholar 

  21. Salem HF, Kharshoum RM, Abou-Taleb HA, AbouTaleb HA, AbouElhassan KM. Progesterone-loaded nanosized transethosomes for vaginal permeation enhancement: formulation, statistical optimization, and clinical evaluation in an ovulatory polycystic ovary syndrome. J Liposome Res. 2018:1–12.

  22. Ma H, Guo D, Fan Y, Wang J, Cheng J, Zhang X. Paeonol-loaded ethosomes as transdermal delivery carriers: design, preparation and evaluation. Molecules (Basel, Switzerland). 2018;23(7).

    Article  PubMed Central  CAS  Google Scholar 

  23. Mahmood S, Mandal UK, Chatterjee B. Transdermal delivery of raloxifene HCl via ethosomal system: formulation, advanced characterizations and pharmacokinetic evaluation. Int J Pharm. 2018;542(1):36–46.

    Article  CAS  PubMed  Google Scholar 

  24. Charde S, Kumar L, Saha R. Development and validation of high-performance liquid chromatographic method for estimation of lercanidipine in rabbit serum. Anal Lett. 2007;40(11):2128–40.

    Article  CAS  Google Scholar 

  25. Salem HF, Kharshoum RM, Halawa AKA, Naguib DM. Preparation and optimization of tablets containing a self-nano-emulsifying drug delivery system loaded with rosuvastatin. J Liposome Res. 2018;28(2):149–60.

    Article  CAS  PubMed  Google Scholar 

  26. Salem HF, Kharshoum RM, Sayed OM, Abdel Hakim LF. Formulation design and optimization of novel soft glycerosomes for enhanced topical delivery of celecoxib and cupferron by Box–Behnken statistical design. Drug Dev Ind Pharm. 2018;44(11):1871–84.

    Article  CAS  PubMed  Google Scholar 

  27. Yang X, Trinh HM, Agrahari V, Sheng Y, Pal D, Mitra AK. Nanoparticle-based topical ophthalmic gel formulation for sustained release of hydrocortisone butyrate. AAPS PharmSciTech. 2016;17(2):294–306.

    Article  CAS  PubMed  Google Scholar 

  28. Moawad FA, Ali AA, Salem HF. Nanotransfersomes-loaded thermosensitive in situ gel as a rectal delivery system of tizanidine HCl: preparation, in vitro and in vivo performance. Drug Deliv. 2017;24(1):252–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aboud HM, Ali AA, El-Menshawe SF, Elbary AA. Nanotransfersomes of carvedilol for intranasal delivery: formulation, characterization and in vivo evaluation. Drug Deliv. 2016;23(7):2471–81.

    CAS  PubMed  Google Scholar 

  30. Aboud HM, Hassan AH, Ali AA, Abdel-Razik A-RH. Novel in situ gelling vaginal sponges of sildenafil citrate-based cubosomes for uterine targeting. Drug Deliv. 2018;25(1):1328–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes—novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release. 2000;65(3):403–18.

    Article  CAS  PubMed  Google Scholar 

  32. Mura S, Manconi M, Valenti D, Sinico C, Vila AO, Fadda AM. Transcutol containing vesicles for topical delivery of minoxidil. J Drug Target. 2011;19(3):189–96.

    Article  CAS  PubMed  Google Scholar 

  33. Bisht D, Verma D, Mirza MA, Anwer MK, Iqbal Z. Development of ethosomal gel of ranolazine for improved topical delivery: in vitro and ex vivo evaluation. J Mol Liq. 2017;225:475–81.

    Article  CAS  Google Scholar 

  34. Salem HF, Kharshoum RM, El-Ela FIA, Abdellatif KR. Evaluation and optimization of pH-responsive niosomes as a carrier for efficient treatment of breast cancer. Drug Deliv Transl Res. 2018;8(3):633–44.

    Article  CAS  PubMed  Google Scholar 

  35. Khallaf RA, Salem HF, Abdelbary A. 5-fluorouracil shell-enriched solid lipid nanoparticles (SLN) for effective skin carcinoma treatment. Drug Deliv. 2016;23(9):3452–60.

    Article  CAS  PubMed  Google Scholar 

  36. Ha E-S, Choo G-H, Baek I-H, Kim J-S, Cho W, Jung YS, et al. Dissolution and bioavailability of lercanidipine–hydroxypropylmethyl cellulose nanoparticles with surfactant. Int J Biol Macromol. 2015;72:218–22.

    Article  CAS  PubMed  Google Scholar 

  37. Charde S, Mudgal M, Kumar L, Saha R. Development and evaluation of buccoadhesive controlled release tablets of lercanidipine. AAPS PharmSciTech. 2008;9(1):182–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhai Y, Xu R, Wang Y, Liu J, Wang Z, Zhai G. Ethosomes for skin delivery of ropivacaine: preparation, characterization and ex vivo penetration properties. J Liposome Res. 2015;25(4):316–24.

    Article  CAS  PubMed  Google Scholar 

  39. Bancroft JD, Gamble M. Theory and practice of histological techniques: Elsevier Health Sciences; 2008.

  40. Mahmoud MO, Aboud HM, Hassan AH, Ali AA, Johnston TP. Transdermal delivery of atorvastatin calcium from novel nanovesicular systems using polyethylene glycol fatty acid esters: ameliorated effect without liver toxicity in poloxamer 407-induced hyperlipidemic rats. J Control Release. 2017;254:10–22.

    Article  CAS  PubMed  Google Scholar 

  41. Shelke S, Shahi S, Jalalpure S, Dhamecha D. Poloxamer 407-based intranasal thermoreversible gel of zolmitriptan-loaded nanoethosomes: formulation, optimization, evaluation and permeation studies. J Liposome Res. 2016;26(4):313–23.

    Article  CAS  PubMed  Google Scholar 

  42. Jain S, Umamaheshwari R, Bhadra D, Jain N. Ethosomes: a novel vesicular carrier for enhanced transdermal delivery of an antiHIV agent. Indian J Pharm Sci. 2004;66(1):72.

    CAS  Google Scholar 

  43. Barupal AK, Gupta V, Ramteke S. Preparation and characterization of ethosomes for topical delivery of aceclofenac. Indian J Pharm Sci. 2010;72(5):582–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goindi S, Dhatt B, Kaur A. Ethosomes-based topical delivery system of antihistaminic drug for treatment of skin allergies. J Microencapsul. 2014;31(7):716–24.

    Article  CAS  PubMed  Google Scholar 

  45. Prasanthi D, Lakshmi P. Development of ethosomes with taguchi robust design-based studies for transdermal delivery of alfuzosin hydrochloride. Int Curr Pharm J. 2012;1(11):370–5.

    Article  CAS  Google Scholar 

  46. Balakrishnan P, Shanmugam S, Lee WS, Lee WM, Kim JO, Oh DH, et al. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int J Pharm. 2009;377(1–2):1–8.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou H, Yue Y, Liu G, Li Y, Zhang J, Gong Q, et al. Preparation and characterization of a lecithin nanoemulsion as a topical delivery system. Nanoscale Res Lett. 2010;5(1):224–30.

    Article  CAS  Google Scholar 

  48. Ahmed TA. Preparation of transfersomes encapsulating sildenafil aimed for transdermal drug delivery: Plackett–Burman design and characterization. J Liposome Res. 2015;25(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  49. Dubey V, Mishra D, Nahar M, Jain NK. Vesicles as tools for the modulation of skin permeability. Expert Opin Drug Deliv. 2007;4(6):579–93.

    Article  CAS  PubMed  Google Scholar 

  50. Pratima NA, Shailee T. Ethosomes: a novel tool for transdermal drug delivery. Int J Res Pharm Sci. 2012;2(1).

  51. Sabir M, Neupane YR, Srivastava M, Amin S, Kohli K. Lipid based nanocarrier of lercanidipine for the management of hypertension. Adv Sci Eng Med. 2015;7(5):361–9.

    Article  CAS  Google Scholar 

  52. Chourasia MK, Kang L, Chan SY. Nanosized ethosomes bearing ketoprofen for improved transdermal delivery. Results Pharma Sci. 2011;1(1):60–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Varshosaz J, Andalib S, Tabbakhian M, Ebrahimzadeh N. Development of lecithin nanoemulsion based organogels for permeation enhancement of metoprolol through rat skin. J Nanomater. 2013;2013:6.

    Google Scholar 

  54. Nasseria AA, Aboofazelib R, Zia H, Needhama TE. Lecithin–stabilized microemulsion–based organogels for topical application of ketorolac tromethamine. II In vitro release study. Iranian J Pharm Res. 2003;117:123.

    Google Scholar 

  55. Rakesh R, Anoop K. Formulation and optimization of nano-sized ethosomes for enhanced transdermal delivery of cromolyn sodium. J Pharm Bioallied Sci. 2012;4(4):333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu X, Liu H, Liu J, He Z, Ding C, Huang G, et al. Preparation of a ligustrazine ethosome patch and its evaluation in vitro and in vivo. Int J Nanomedicine. 2011;6:241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shen L-N, Zhang Y-T, Wang Q, Xu L, Feng N-P. Enhanced in vitro and in vivo skin deposition of apigenin delivered using ethosomes. Int J Pharm. 2014;460(1–2):280–8.

    Article  CAS  PubMed  Google Scholar 

  58. Barupal A, Gupta V, Ramteke S. Preparation and characterization of ethosomes for topical delivery of aceclofenac. Indian J Pharm Sci. 2010;72(5):582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Paolino D, Celia C, Trapasso E, Cilurzo F, Fresta M. Paclitaxel-loaded ethosomes®: potential treatment of squamous cell carcinoma, a malignant transformation of actinic keratoses. Eur J Pharm Biopharm. 2012;81(1):102–12.

    Article  CAS  PubMed  Google Scholar 

  60. Ainbinder D, Touitou E. Testosterone ethosomes for enhanced transdermal delivery. Drug Deliv. 2005;12(5):297–303.

    Article  CAS  PubMed  Google Scholar 

  61. Manosroi A, Kongkaneramit L, Manosroi J. Stability and transdermal absorption of topical amphotericin B liposome formulations. Int J Pharm. 2004;270(1–2):279–86.

    Article  CAS  PubMed  Google Scholar 

  62. Habib BA, AbouGhaly MH. Combined mixture-process variable approach: a suitable statistical tool for nanovesicular systems optimization. Expert Opin Drug Deliv. 2016;13(6):777–88.

    Article  CAS  PubMed  Google Scholar 

  63. Ainbinder D, Paolino D, Fresta M, Touitou E. Drug delivery applications with ethosomes. J Biomed Nanotechnol. 2010;6(5):558–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasha A. Khallaf.

Ethics declarations

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 249 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, H.F., El-Menshawe, S.F., Khallaf, R.A. et al. A novel transdermal nanoethosomal gel of lercanidipine HCl for treatment of hypertension: optimization using Box-Benkhen design, in vitro and in vivo characterization. Drug Deliv. and Transl. Res. 10, 227–240 (2020). https://doi.org/10.1007/s13346-019-00676-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-019-00676-5

Keywords

Navigation