Skip to main content

Advertisement

Log in

Alginate-liposomal construct for bupivacaine delivery and MSC function regulation

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

A Correction to this article was published on 16 December 2021

This article has been updated

Abstract

Mesenchymal stromal cell (MSC) therapies have become potential treatment options for multiple ailments and traumatic injuries. In the clinical setting, MSC are likely to be co-administered with local anesthetics (LA) which have been shown to have dose- and potency-dependent detrimental effects on the viability and function of cells. We previously developed and characterized a sustained-release LA delivery formulation comprised of alginate-encapsulated liposomal bupivacaine. The current studies were designed to evaluate the effect of this formulation on the secretion of three key MSC regulatory molecules, interleukin 6 (IL-6), prostaglandin E2 (PGE2), and transforming growth factor-beta 1 (TGF-β1). MSCs were treated with several bupivacaine formulations—bolus, liposome, or alginate-liposome construct (engineered construct)—in the presence or absence of inflammatory stimulus to stimulate an injured tissue environment. Our results indicated that compared to bolus or liposomal bupivacaine, the engineered construct preserved or promoted MSC anti-inflammatory PGE2 secretion; however, the engineered construct did not increase TGF-β1 secretion. Bupivacaine release profile analyses indicated that mode of drug delivery controlled the LA concentration over time and pathway analysis identified several shared and cytokine-specific molecular mediators for IL-6, PGE2, and TGF-β1 which could explain differential MSC secretion responses in the presence of bupivacaine. Collectively, these studies support the potential utility of alginate-encapsulated LA constructs for anti-inflammatory cell therapy co-administration and indicate that mode of local anesthetic delivery can significantly alter MSC secretome function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. Lirk P, Picardi S, Hollmann MW. Local anaesthetics. Eur J Anaesthesiol. 2014;31(11):575–85. https://doi.org/10.1097/eja.0000000000000137.

    Article  CAS  PubMed  Google Scholar 

  2. Ballieul RJJT, Herregods S, Van Sint Jan P, Wyler B, Vereecke H, Almqvist F, et al. The peri-operative use of intra-articular local anesthetics: a review. Acta Anaesthesiol Belg. 2009;6(2):7.

    Google Scholar 

  3. Becker DE, Reed KL. Local anesthetics: review of pharmacological considerations. Anesth Prog. 2012;59(2):90–101. https://doi.org/10.2344/0003-3006-59.2.90.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Perez-Castro R, Patel S, Garavito-Aguilar ZV, Rosenberg A, Recio-Pinto E, Zhang J, et al. Cytotoxicity of local anesthetics in human neuronal cells. Anesth Analg. 2009;108(3):997–1007. https://doi.org/10.1213/ane.0b013e31819385e1.

    Article  CAS  PubMed  Google Scholar 

  5. Dregalla RC, Lyons NF, Reischling PD, Centeno CJ. Amide-type local anesthetics and human mesenchymal stem cells: clinical implications for stem cell therapy. Stem Cells Transl Med. 2014;3(3):365–74. https://doi.org/10.5966/sctm.2013-0058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Breu A, Eckl S, Zink W, Kujat R, Angele P. Cytotoxicity of local anesthetics on human mesenchymal stem cells in vitro. Arthroscopy. 2013;29(10):1676–84. https://doi.org/10.1016/j.arthro.2013.06.018.

    Article  PubMed  Google Scholar 

  7. Fedder C, Beck-Schimmer B, Aguirre J, Hasler M, Roth-Z’graggen B, Urner M, et al. In vitro exposure of human fibroblasts to local anaesthetics impairs cell growth. Clin Exp Immunol. 2010;162(2):280–8. https://doi.org/10.1111/j.1365-2249.2010.04252.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gray A, Marrero-Berrios I, Weinberg J, Manchikalapati D, SchianodiCola J, Schloss RS, et al. The effect of local anesthetic on pro-inflammatory macrophage modulation by mesenchymal stromal cells. Int Immunopharmacol. 2016;33:48–54. https://doi.org/10.1016/j.intimp.2016.01.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17(1):11–22. https://doi.org/10.1016/j.stem.2015.06.007.

    Article  CAS  PubMed  Google Scholar 

  10. Rahnama R, Wang M, Dang AC, Kim HT, Kuo AC. Cytotoxicity of local anesthetics on human mesenchymal stem cells. J Bone Joint Surg Am. 2013;95(2):132–7. https://doi.org/10.2106/JBJS.K.01291.

    Article  PubMed  Google Scholar 

  11. Lucchinetti PDE, Awad MD, Ahmed E, MDM R, MDPDJ F, PDP-H L, et al. Antiproliferative effects of local anesthetics on mesenchymal stem cells potential implications for tumor spreading and wound healing. Anesthesiology. 2012;116(4):841–56. https://doi.org/10.1097/ALN.0b013e31824babfe.

    Article  CAS  PubMed  Google Scholar 

  12. Barminko J, Kim JH, Otsuka S, Gray A, Schloss R, Grumet M, et al. Encapsulated mesenchymal stromal cells for in vivo transplantation. Biotechnol Bioeng. 2011;108(11):2747–58. https://doi.org/10.1002/bit.23233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7. https://doi.org/10.1126/science.284.5411.143.

    Article  CAS  PubMed  Google Scholar 

  14. Meirelles Lda S, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009;20(5–6):419–27. https://doi.org/10.1016/j.cytogfr.2009.10.002.

    Article  CAS  PubMed  Google Scholar 

  15. Gray A, Maguire T, Schloss R, Yarmush ML. Identification of IL-1β and LPS as optimal activators of monolayer and alginate-encapsulated mesenchymal stromal cell immunomodulation using design of experiments and statistical methods. Biotechnol Prog. 2015;31(4):1058–70. https://doi.org/10.1002/btpr.2103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99(10):3838–43. https://doi.org/10.1182/blood.V99.10.3838.

    Article  PubMed  Google Scholar 

  17. Barminko JA, Nativ NI, Schloss R, Yarmush ML. Fractional factorial design to investigate stromal cell regulation of macrophage plasticity. Biotechnol Bioeng. 2014;111(11):2239–51. https://doi.org/10.1002/bit.25282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gray A, Marrero-Berrios I, Ghodbane M, Maguire T, Weinberg J, Manchikalapati D, et al. Effect of local anesthetics on human mesenchymal stromal cell secretion. Nano Life. 2015;5(02):1550001–14. https://doi.org/10.1142/S1793984415500014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jain R, Shah NH, Malick AW, Rhodes CT. Controlled drug delivery by biodegradable poly(ester) devices: different preparative approaches. Drug Dev Ind Pharm. 1998;24(8):703–27. https://doi.org/10.3109/03639049809082719.

    Article  CAS  PubMed  Google Scholar 

  20. Blanco MD, Bernardo MV, Gomez C, Muniz E, Teijon JM. Bupivacaine-loaded comatrix formed by albumin microspheres included in a poly(lactide-co-glycolide) film: in vivo biocompatibility and drug release studies. Biomaterials. 1999;20(20):1919–24. https://doi.org/10.1016/S0142-9612(99)00092-7.

    Article  CAS  PubMed  Google Scholar 

  21. Shikanov A, Domb AJ, Weiniger CF. Long acting local anesthetic-polymer formulation to prolong the effect of analgesia. J Control Release. 2007;117(1):97–103. https://doi.org/10.1016/j.jconrel.2006.10.014.

    Article  CAS  PubMed  Google Scholar 

  22. Cohen SM. Extended pain relief trial utilizing infiltration of Exparel®, a long-acting multivesicular liposome formulation of bupivacaine: a phase IV health economic trial in adult patients undergoing open colectomy. J Pain Res. 2012;5:567–72. https://doi.org/10.2147/JPR.S38621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weiniger CF, Golovanevski L, Domb AJ, Ickowicz D. Extended release formulations for local anaesthetic agents. Anaesthesia. 2012;67(8):906–16. https://doi.org/10.1111/j.1365-2044.2012.07168.x.

    Article  CAS  PubMed  Google Scholar 

  24. Maguire T, Davis M, Marrero-Berrios I, Zhu C, Gaughan C, Weinberg J, Manchikalapati D, SchianodiCola J, Kamath H, Schloss R, Yarmush J. Control release anesthetics to enable an integrated anesthetic-mesenchymal stromal cell therapeutic. Int J Anesth Pain Med. 2016. https://doi.org/10.21767/2471-982X.100012.

  25. Lambrechts M, O’Brien MJ, Savoie FH, You Z. Liposomal extended-release bupivacaine for postsurgical analgesia. Patient Preference and Adherence. 2013;7:885–90. https://doi.org/10.2147/PPA.S32175.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rogobete AF, Bedreag OH, Sărăndan M, Păpurică M, Preda G, Dumbuleu MC, et al. Liposomal bupivacaine—new trends in anesthesia and intensive care units. Egypt J Anaesthesia. 2015;31(1):89–95. https://doi.org/10.1016/j.egja.2014.12.004.

    Article  Google Scholar 

  27. Gray A, Marrero-Berrios I, Ghodbane M, Maguire T, Weinberg J, Manchikalapati D, et al. Effect of local anesthetics on human mesenchymal stromal cell secretion. Nano Life. 2015;05(02):1550001–14. https://doi.org/10.1142/s1793984415500014.

    Article  CAS  Google Scholar 

  28. FDA (2012) Bupivacaine hydrochloride injection, USP. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/018692s015lbl.pdf.

  29. Xing Z, Gauldie J, Cox G, Baumann H, Jordana M, Lei XF, et al. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Investig. 1998;101(2):311–20. https://doi.org/10.1172/JCI1368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta (BBA) - Mol Cell Res. 2011;1813(5):878–88. https://doi.org/10.1016/j.bbamcr.2011.01.034.

    Article  CAS  Google Scholar 

  31. Meretoja VV, Dahlin RL, Kasper FK, Mikos AG. Enhanced chondrogenesis in co-cultures with articular chondrocytes and mesenchymal stem cells. Biomaterials. 2012;33(27):6362–9. https://doi.org/10.1016/j.biomaterials.2012.05.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Faulknor RA, Olekson MA, Nativ NI, Ghodbane M, Gray AJ, Berthiaume F. Mesenchymal stromal cells reverse hypoxia-mediated suppression of α-smooth muscle actin expression in human dermal fibroblasts. Biochem Biophys Res Commun. 2015;458(1):8–13. https://doi.org/10.1016/j.bbrc.2015.01.013.

    Article  CAS  PubMed  Google Scholar 

  33. Hunziker EB, Driesang IMK, Morris EA. Chondrogenesis in cartilage repair is induced by members of the transforming growth factor-beta superfamily. Clin Orthop Relat Res. 2001;391:S171–S81. https://doi.org/10.1097/00003086-200110001-00017.

    Article  Google Scholar 

  34. Davatchi F, Abdollahi BS, Mohyeddin M, Shahram F, Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis. 2011;14(2):211–5. https://doi.org/10.1111/j.1756-185X.2011.01599.x.

    Article  PubMed  Google Scholar 

  35. Abrao J, Fernandes CR, White PF, Shimano AC, Okubo R, Lima GB, et al. Effect of local anaesthetic infiltration with bupivacaine and ropivacaine on wound healing: a placebo-controlled study. Int Wound J. 2012;11(4):379–85. https://doi.org/10.1111/j.1742-481X.2012.01101.x.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Diaz MF, Vaidya AB, Evans SM, Lee HJ, Aertker BM, Alexander AJ, et al. Biomechanical forces promote immune regulatory function of bone marrow mesenchymal stromal cells. Stem Cells. 2017;9(10)

  37. Sullivan DE, Ferris M, Nguyen H, Abboud E, Brody AR. TNF-alpha induces TGF-beta1 expression in lung fibroblasts at the transcriptional level via AP-1 activation. J Cell Mol Med. 2009;13(8B):1866–76. https://doi.org/10.1111/j.1582-4934.2008.00647.x.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nagineni CN, Cherukuri KS, Kutty V, Detrick B, Hooks JJ. Interferon-gamma differentially regulates TGF-beta1 and TGF-beta2 expression in human retinal pigment epithelial cells through JAK-STAT pathway. J Cell Physiol. 2007;210(1):192–200. https://doi.org/10.1002/jcp.20839.

    Article  CAS  PubMed  Google Scholar 

  39. Chang YC, Hsu YC, Liu CL, Huang SY, MC H, Cheng SP. Local anesthetics induce apoptosis in human thyroid cancer cells through the mitogen-activated protein kinase pathway. PLoS One. 2014;9(2):e89563. https://doi.org/10.1371/journal.pone.0089563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Harato M, Huang L, Kondo F, Tsunekawa K, Feng GG, Fan JH, et al. Bupivacaine-induced apoptosis independently of WDR35 expression in mouse neuroblastoma Neuro2a cells. BMC Neurosci. 2012;13(1):149. https://doi.org/10.1186/1471-2202-13-149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Galbes O, Bourret A, Nouette-Gaulain K, Pillard F, Matecki S, Py G, et al. N-acetylcysteine protects against bupivacaine-induced myotoxicity caused by oxidative and sarcoplasmic reticulum stress in human skeletal myotubes. Anesthesiology. 2010;113(3):560–9. https://doi.org/10.1097/ALN.0b013e3181e4f4ec.

    Article  CAS  PubMed  Google Scholar 

  42. Irwin W, Fontaine E, Agnolucci L, Penzo D, Betto R, Bortolotto S, et al. Bupivacaine myotoxicity is mediated by mitochondria. J Biol Chem. 2002;277(14):12221–7. https://doi.org/10.1074/jbc.M108938200.

    Article  CAS  PubMed  Google Scholar 

  43. Capper EA, Roshak AK, Bolognese BJ, Podolin PL, Smith T, Dewitt DL, et al. Effect of local anesthetics by tranilast, SB 252218, a compound demonstrating efficacy in restenosis. J Pharmacol Exp Ther. 2000;295(3):1061–9.

    CAS  PubMed  Google Scholar 

  44. Mao Y, Sarhan D, Steven A, Seliger B, Kiessling R, Lundqvist A. Inhibition of tumor-derived prostaglandin-e2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity. Clin Cancer Res. 2014;20(15):4096–106. https://doi.org/10.1158/1078-0432.CCR-14-0635.

    Article  CAS  PubMed  Google Scholar 

  45. Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010;140(6):771–6. https://doi.org/10.1016/j.cell.2010.03.006.

    Article  CAS  PubMed  Google Scholar 

  46. Benito MJ, Veale DJ, FitzGerald O, van den Berg WB, Bresnihan B. Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis. 2005;64(9):1263–7. https://doi.org/10.1136/ard.2004.025270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pilbeam C, Rao Y, Voznesensky O, Kawaguchi H, Alander C, Raisz L, et al. Transforming growth factor-beta1 regulation of prostaglandin G/H synthase-2 expression in osteoblastic MC3T3-E1 cells. Endocrinology. 1997;138(11):4672–82. https://doi.org/10.1210/endo.138.11.5495.

    Article  CAS  PubMed  Google Scholar 

  48. Wakabayashi A, Sawada K, Nakayama M, Toda A, Kimoto A, Mabuchi S, et al. Targeting interleukin-6 receptor inhibits preterm delivery induced by inflammation. Mol Hum Reprod. 2013;19(11):718–26. https://doi.org/10.1093/molehr/gat057.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Support for this work came from grants from the United States Department of Education (Graduate Assistance in Areas of National Need Award P200A150131) and the National Institutes of Health (Ruth L. Kirschstein National Research Service Award T32 GM008339 from the National Institute of General Medical Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rene S. Schloss.

Ethics declarations

The experiments published in this manuscript comply with current laws of the country in which they were performed.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, M.S., Marrero-Berrios, I., Perez, I. et al. Alginate-liposomal construct for bupivacaine delivery and MSC function regulation. Drug Deliv. and Transl. Res. 8, 226–238 (2018). https://doi.org/10.1007/s13346-017-0454-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0454-8

Keywords

Navigation