Skip to main content
Log in

Betahistine dihydrochloride transdermal delivery via optimized thermosensitive gels: percutaneous absorption evaluation using rat growth as a biomarker

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The aim of this study was to develop and optimize a betahistine dihydrochloride (BH) thermoreversible bioadhesive gel intended for transdermal delivery. The gels were obtained via cold method. A full factorial design was employed to investigate the joint effect of Poloxamer 407 concentration (18 and 20%), adhesive polymer type (Polyvinyl pyrolidone, Hydroxypropyl methylcellulose, and Carbopol 934), and adhesive polymer concentration (0.5 and 1.5%) on gelling temperature, viscosity at 37 °C, and adhesion strength. Data collected were analyzed using multiple linear regression. A desirability index approach with relative importance weight was used to choose the most desirable formulation. F4 (20% Poloxamer+1.5% Carbopol) was selected for further characterization. F4 released 96.97% drug in 12 h across hairless rat skin. F4 gelation temperature and time were 36 ± 0.35 °C, and 6 ± 0.7 min, respectively. F4 adhesive force was 8835.68 dyne/cm2. F4 was tested for its appetite suppressing effect in a rat model and it was evaluated histopathologically. Rats’ chow intake and weight gain was significantly decreased with no signs of inflammation or lipolysis when the optimized BH gel formulation, F4, was compared with untreated animals and animals treated with BH free gel. The results suggest that BH is percutaneously absorbed from the gel base and that the BH gel is tolerable. The desirability index approach with relative importance weight of responses was effective in determination of the optimum formulation. BH is systemically effective and well-tolerated when applied topically in hydrogel-based systems. The Carbopol-Poloxamer gel is a promising modality for transdermal delivery of BH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Albu S, Chirtes F, Trombitas V, Nagy A, Marceanu L, Babighian G, et al. Intratympanic dexamethasone versus high dosage of betahistine in the treatment of intractable unilateral Meniere disease. Am J Otolaryngol. 2015;36(2):205–9. https://doi.org/10.1016/j.amjoto.2014.10.032.

    Article  PubMed  Google Scholar 

  2. Hathout RM, Nasr M. Transdermal delivery of betahistine hydrochloride using microemulsions: physical characterization, biophysical assessment, confocal imaging and permeation studies. Colloids Surf B: Biointerfaces. 2013;110:254–60. https://doi.org/10.1016/j.colsurfb.2013.05.007.

    Article  CAS  PubMed  Google Scholar 

  3. Tighilet B, Trottier S, Lacour M. Dose- and duration-dependent effects of betahistine dihydrochloride treatment on histamine turnover in the cat. Eur J Pharmacol. 2005;523(1–3):54–63. https://doi.org/10.1016/j.ejphar.2005.09.017.

    Article  CAS  PubMed  Google Scholar 

  4. Taro O, Masahiro I, Zhou Jp, Tadatoshi T, Akemi N. Percutaneous absorption of betahistine through rat skin and pharmacokinetic analysis of the plasma concentration. Int J Pharm. 1994;102(1–3):141–9. https://doi.org/10.1016/0378-5173(94)90049-3.

    Article  Google Scholar 

  5. Abdelkader H, Pierscionek B, Alany RG. Novel in situ gelling ocular films for the opioid growth factor-receptor antagonist-naltrexone hydrochloride: fabrication, mechanical properties, mucoadhesion, tolerability and stability studies. Int J Pharm. 2014;477(1–2):631–42. https://doi.org/10.1016/j.ijpharm.2014.10.069.

    Article  CAS  PubMed  Google Scholar 

  6. Cappel MJ, Kreuter J. Effect of nonionic surfactants on transdermal drug delivery: II. Poloxamer and poloxamine surfactants. Int J Pharm. 1991;69(2):155–67. https://doi.org/10.1016/0378-5173(91)90220-I.

    Article  CAS  Google Scholar 

  7. Chen C-C, Fang CL, Al-Suwayeh SA, Leu YL, Fang JY. Transdermal delivery of selegiline from alginate-pluronic composite thermogels. Int J Pharm. 2011;415(1):119–28. https://doi.org/10.1016/j.ijpharm.2011.05.060.

    Article  CAS  PubMed  Google Scholar 

  8. Heilmann S, Küchler S, Wischke C, Lendlein A, Stein C, Schäfer-Korting M. A thermosensitive morphine-containing hydrogel for the treatment of large-scale skin wounds. Int J Pharm. 2013;444(1):96–102. https://doi.org/10.1016/j.ijpharm.2013.01.027.

    Article  CAS  PubMed  Google Scholar 

  9. Jeck-Thole S, Wagner W. Betahistine. Drug Saf. 2006;29(11):1049–59. https://doi.org/10.2165/00002018-200629110-00004.

    Article  CAS  PubMed  Google Scholar 

  10. Tomar MS, et al. Pharmacokinetics of 2-pyridyl acetic acid, a major betahistine metabolite in healthy Indian volunteers. Pharm Lett. 2009;1(2):52–9.

    CAS  Google Scholar 

  11. Deng C, Lian J, Pai N, Huang XF. Reducing olanzapine-induced weight gain side effect by using betahistine: a study in the rat model. J Psychopharmacol. 2012;26(9):1271–9. https://doi.org/10.1177/0269881112449396.

    Article  CAS  PubMed  Google Scholar 

  12. Snyman J, et al. The influence of betahistine on the dynamics of the cutaneous hypersensitivity reaction in patients with grass pollen allergy. Immunopharmacology. 1995;30(1):71–8. https://doi.org/10.1016/0162-3109(95)00007-G.

    Article  CAS  PubMed  Google Scholar 

  13. Gonjari ID, Karmarkar AB, Khade TS, Hosmani AH, Navale RB. Use of factorial design in formulation and evaluation of ophthalmic gels of gatifloxacin: comparison of different mucoadhesive polymers. Drug Discov Ther. 2010;4(6):423–34.

    CAS  PubMed  Google Scholar 

  14. Hani U, Shivakumar H. Development of miconazole nitrate thermosensitive bioadhesive vaginal gel for vaginal candidiasis. Am J Adv Drug Delivery. 2013;1(3):358–68.

    Google Scholar 

  15. Schmolka IR. Artificial skin I. Preparation and properties of pluronic F-127 gels for treatment of burns. J Biomed Mater Res. 1972;6(6):571–82. https://doi.org/10.1002/jbm.820060609.

    Article  CAS  PubMed  Google Scholar 

  16. Tuğcu-Demiröz F, Acartürk F, Erdoğan D. Development of long-acting bioadhesive vaginal gels of oxybutynin: formulation, in vitro and in vivo evaluations. Int J Pharm. 2013;457(1):25–39. https://doi.org/10.1016/j.ijpharm.2013.09.003.

    Article  PubMed  Google Scholar 

  17. Khan S, Patil K, Bobade N, Yeole P, Gaikwad R. Formulation of intranasal mucoadhesive temperature-mediated in situ gel containing ropinirole and evaluation of brain targeting efficiency in rats. J Drug Targets. 2010;18(3):223–34. https://doi.org/10.3109/10611860903386938.

    Article  CAS  Google Scholar 

  18. Bhandwalkar MJ, Avachat AM. Thermoreversible nasal in situ gel of venlafaxine hydrochloride: formulation, characterization, and Pharmacodynamic evaluation. AAPS PharmSciTech. 2013;14(1):101–10. https://doi.org/10.1208/s12249-012-9893-1.

    Article  CAS  PubMed  Google Scholar 

  19. Nikouei NS, et al. Thermoreversible hydrogels based on triblock copolymers of poly(ethylene glycol) and carboxyl functionalized poly(ε-caprolactone): the effect of carboxyl group substitution on the transition temperature and biocompatibility in plasma. Acta Biomater. 2015;12(0):81–92. https://doi.org/10.1016/j.actbio.2014.10.001.

    Article  CAS  Google Scholar 

  20. Gabal YM, Kamel AO, Sammour OA, Elshafeey AH. Effect of surface charge on the brain delivery of nanostructured lipid carriers in situ gels via the nasal route. Int J Pharm. 2014;473(1–2):442–57. https://doi.org/10.1016/j.ijpharm.2014.07.025.

    Article  CAS  PubMed  Google Scholar 

  21. Perioli L, Pagano C. Gastroretentive inorganic–organic hybrids to improve class IV drug absorption. Int J Pharm. 2014;477(1–2):21–31. https://doi.org/10.1016/j.ijpharm.2014.10.002.

    Article  CAS  PubMed  Google Scholar 

  22. Elkomy Mohammed H, E. Menshawe S. F., Eid Hussein M, Ali Ahmed MA, Development of a Nanogel formulation for transdermal delivery of tenoxicam: a pharmacokinetic-pharmacodynamic modeling approach for quantitative prediction of skin absorption. Drug Dev Industrial Pharma, 2016 (just-accepted): p. 1–50.

  23. Qian S, Wong YC, Zuo Z. Development, characterization and application of in situ gel systems for intranasal delivery of tacrine. Int J Pharm. 2014;468(1–2):272–82. https://doi.org/10.1016/j.ijpharm.2014.04.015.

    Article  CAS  PubMed  Google Scholar 

  24. Nipun TS, Ashraful Islam SM. SEDDS of gliclazide: preparation and characterization by in-vitro, ex-vivo and in-vivo techniques. Saudi Pharma J. 2014;22(4):343–8. https://doi.org/10.1016/j.jsps.2013.06.001.

    Article  Google Scholar 

  25. Diet CB, Diet U, Diet NP. Report of the American Institute of Nutrition Ad Hoc Committee on Standards for Nutritional Studies. J Nutr. 1977;107:1340.

    Google Scholar 

  26. Kasaoka S, Tsuboyama-Kasaoka N, Kawahara Y, Inoue S, Tsuji M, Ezaki O, et al. Histidine supplementation suppresses food intake and fat accumulation in rats. Nutrition. 2004;20(11):991–6. https://doi.org/10.1016/j.nut.2004.08.006.

    Article  CAS  PubMed  Google Scholar 

  27. Singh RM, Kumar A, Pathak K. Mucoadhesive in situ nasal gelling drug delivery systems for modulated drug delivery. Exp Opin Drug Delivery. 2013;10(1):115–30. https://doi.org/10.1517/17425247.2013.746659.

    Article  CAS  Google Scholar 

  28. Tuntiyasawasdikul S, Limpongsa E, Jaipakdee N, Sripanidkulchai B. A monolithic drug-in-adhesive patch of methoxyflavones from Kaempferia parviflora: in vitro and in vivo evaluation. Int J Pharm. 2015;478(2):486–95. https://doi.org/10.1016/j.ijpharm.2014.11.073.

    Article  CAS  PubMed  Google Scholar 

  29. Ibrahim E-S, et al. Development and characterization of thermosensitive pluronic-based metronidazole in situ gelling formulations for vaginal application. Acta Pharma. 2012;62(1):59–70.

    Article  CAS  Google Scholar 

  30. Lin H-R, Sung K. Carbopol/pluronic phase change solutions for ophthalmic drug delivery. J Control Release. 2000;69(3):379–88. https://doi.org/10.1016/S0168-3659(00)00329-1.

    Article  CAS  PubMed  Google Scholar 

  31. Carvalho FC, Calixto G, Hatakeyama IN, Luz GM, Gremião MPD, Chorilli M. Rheological, mechanical, and bioadhesive behavior of hydrogels to optimize skin delivery systems. Drug Dev Ind Pharm. 2013;39(11):1750–7. https://doi.org/10.3109/03639045.2012.734510.

    Article  CAS  PubMed  Google Scholar 

  32. Jung EC, Maibach HI. Animal models for percutaneous absorption. J Appl Toxicol. 2015;35(1):1–10. https://doi.org/10.1002/jat.3004.

    Article  CAS  PubMed  Google Scholar 

  33. Jacobi U, Kaiser M, Toll R, Mangelsdorf S, Audring H, Otberg N, et al. Porcine ear skin: an in vitro model for human skin. Skin Res Technol. 2007;13(1):19–24. https://doi.org/10.1111/j.1600-0846.2006.00179.x.

    Article  PubMed  Google Scholar 

  34. Capt A, Luzy AP, Esdaile D, Blanck O. Comparison of the human skin grafted onto nude mouse model with in vivo and in vitro models in the prediction of percutaneous penetration of three lipophilic pesticides. Regul Toxicol Pharmacol. 2007;47(3):274–87. https://doi.org/10.1016/j.yrtph.2006.11.008.

    Article  CAS  PubMed  Google Scholar 

  35. Srividya B, Cardoza RM, Amin PD. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J Control Release. 2001;73(2-3):205–11. https://doi.org/10.1016/S0168-3659(01)00279-6.

    Article  CAS  PubMed  Google Scholar 

  36. Young RC, Ganellin CR, Griffiths R, Mitchell RC, Parsons ME, Saunders D, et al. An approach to the design of brain-penetrating histaminergic agonists. Eur J Med Chem. 1993;28(3):201–11. https://doi.org/10.1016/0223-5234(93)90135-2.

    Article  CAS  Google Scholar 

  37. Arrang, J.-M., Garbarg M., Quach T.T., Tuong M.D.T., Yeramian E., Schwartz J.C., Actions of betahistine at histamine receptors in the brain. Eur J Pharmacol, 1985. 111(1): p. 73–84, 1, DOI: https://doi.org/10.1016/0014-2999(85)90115-3.

  38. The electronic Medicines Compendium. Betahistine Dihydrochloride 8mg Tablets. 2016 [cited 2017 17 May]; Available from: https://www.medicines.org.uk/emc/medicine/26291.

  39. Lambert WJ, Higuchi WI, Knutson K, Krill SL. Effects of long-term hydration leading to the development of polar channels in hairless mouse stratum corneum. J Pharm Sci. 1989;78(11):925–8. https://doi.org/10.1002/jps.2600781109.

    Article  CAS  PubMed  Google Scholar 

  40. Koyama Y, Bando H, Yamashita F, Takakura Y, Sezaki H, Hashida M. Comparative analysis of percutaneous absorption enhancement by d-limonene and oleic acid based on a skin diffusion model. Pharm Res. 1994;11(3):377–83. https://doi.org/10.1023/A:1018904802566.

    Article  CAS  PubMed  Google Scholar 

  41. Ogiso T, Shiraki T, Okajima K, Tanino T, Iwaki M, Wada T. Transfollicular drug delivery: penetration of drugs through human scalp skin and comparison of penetration between scalp and abdominal skins in vitro. J Drug Target. 2002;10(5):369–78. https://doi.org/10.1080/1061186021000001814.

    Article  CAS  PubMed  Google Scholar 

  42. Miller MJS, Zhang XJ, Barkemeyer B, Sadowska-krowicka H, Eloby-childress S, Gu X, et al. Potential role of histamine monochloramine in a rabbit model of ileitis. Scand J Gastroenterol. 1991;26(8):852–8. https://doi.org/10.3109/00365529109037022.

    Article  CAS  PubMed  Google Scholar 

  43. Kai M, Hayashi K, Kaida I, Aki H, Yamamoto M. Permeation-enhancing effect of aloe-emodin anthrone on water-soluble and poorly permeable compounds in rat colonic mucosa. Biol Pharm Bull. 2002;25(12):1608–13. https://doi.org/10.1248/bpb.25.1608.

    Article  CAS  PubMed  Google Scholar 

  44. Ali AH, Yanoff LB, Stern EA, Akomeah A, Courville A, Kozlosky M, et al. Acute effects of betahistine hydrochloride on food intake and appetite in obese women: a randomized, placebo-controlled trial. Am J Clin Nutr. 2010;92(6):1290–7. https://doi.org/10.3945/ajcn.110.001586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sakata T, Yoshimatsu H, Kurokawa M. Hypothalamic neuronal histamine: implications of its homeostatic control of energy metabolism. Nutrition. 1997;13(5):403–11. https://doi.org/10.1016/S0899-9007(97)91277-6.

    Article  CAS  PubMed  Google Scholar 

  46. Masaki Takayuki YH, Seiichi C, Takeshi W, Toshiie S. Central infusion of histamine reduces fat accumulation and upregulates UCP family in leptin-resistant obese mice. Diabetes. 2001;50(2):376–84. https://doi.org/10.2337/diabetes.50.2.376.

    Article  Google Scholar 

  47. Shin S-C, Cho C-W, Oh I-J. Enhanced efficacy by percutaneous absorption of piroxicam from the poloxamer gel in rats. Int J Pharm. 2000;193(2):213–8. https://doi.org/10.1016/S0378-5173(99)00339-7.

    Article  CAS  PubMed  Google Scholar 

  48. Choi J-S, Shin S-C. Preparation and evaluation of pranoprofen gel for percutaneous administration. Drug Dev Ind Pharm. 2007;33(1):19–26. https://doi.org/10.1080/03639040600975071.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by an internal departmental grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Hassan Elkomy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 465 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkomy, M.H., El-Menshawe, S.F., Ali, A.A. et al. Betahistine dihydrochloride transdermal delivery via optimized thermosensitive gels: percutaneous absorption evaluation using rat growth as a biomarker. Drug Deliv. and Transl. Res. 8, 165–177 (2018). https://doi.org/10.1007/s13346-017-0449-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-017-0449-5

Keywords

Navigation