Skip to main content
Log in

Preparation, characterization, and in vitro release studies of insulin-loaded double-walled poly(lactide-co-glycolide) microspheres

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to fabricate insulin-loaded double-walled and single-polymer poly(lactide-co-glycolide) (PLGA) microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA), and a moderate degrading carboxyl-terminated PLGA polymers. A modified water-in-oil-in-oil-in-water (w/o/o/w) emulsion solvent evaporation technique was employed to prepare double-walled microspheres, whereas single-polymer microspheres were fabricated by a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The effect of fabrication techniques and polymer characteristics on microspheres size, morphology, encapsulation efficiency, in vitro release, and insulin stability was evaluated. The prepared double-walled microspheres were essentially non-porous, smooth surfaced, and spherical in shape, whereas single-polymer microspheres were highly porous. Double-walled microspheres exhibited a significantly reduced initial burst followed by sustained and almost complete release of insulin compared to single-polymer microspheres. Initial burst release was further suppressed from double-walled microspheres when the mass ratio of the component polymers was increased. In conclusion, double-walled microspheres made of Glu-PLGA and PLGA can be a potential delivery system of therapeutic insulin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Carino GP, Jacob JS, Mathiowitz E. Nanosphere based oral insulin delivery. J Control Release. 2000;65(1):261–9.

    Article  CAS  PubMed  Google Scholar 

  2. Damgé C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. J Control Release. 2007;117(2):163–70.

    Article  PubMed  Google Scholar 

  3. Wu ZM, Zhou L, Guo XD, Jiang W, Ling L, Qian Y, et al. HP55-coated capsule containing PLGA/RS nanoparticles for oral delivery of insulin. Int J Pharm. 2012;425(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  4. Wu Z, Ling L, Zhou L, Guo X, Jiang W, Qian Y, et al. Novel preparation of PLGA/HP55 nanoparticles for oral insulin delivery. Nanoscale Res Lett. 2012;7(1):299.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhao X, Shan C, Zu Y, Zhang Y, Wang W, Wang K, et al. Preparation, characterization, and evaluation in vivo of Ins-SiO 2-HP55 (insulin-loaded silica coating HP55) for oral delivery of insulin. Int J Pharm. 2013;454(1):278–84.

    Article  CAS  PubMed  Google Scholar 

  6. Nyambura BK, Kellaway IW, Taylor KM. Insulin nanoparticles: stability and aerosolization from pressurized metered dose inhalers. Int J Pharm. 2009;375(1):114–22.

    Article  CAS  PubMed  Google Scholar 

  7. Al-Qadi S, Grenha A, Carrión-Recio D, Seijo B, Remuñán-López C. Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. J Control Release. 2012;157(3):383–90.

    Article  CAS  PubMed  Google Scholar 

  8. Ito Y, Hagiwara E, Saeki A, Sugioka N, Takada K. Feasibility of microneedles for percutaneous absorption of insulin. Eur J Pharm Sci. 2006;29(1):82–8.

    Article  CAS  PubMed  Google Scholar 

  9. Sahni J, Raj S, Ahmad FJ, Khar RK. Design and in vitro characterization of buccoadhesive drug delivery system of insulin. Indian J Pharm Sci. 2008;70(1):61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sintov AC, Levy HV, Botner S. Systemic delivery of insulin via the nasal route using a new microemulsion system: in vitro and in vivo studies. J Control Release. 2010;148(2):168–76.

    Article  CAS  PubMed  Google Scholar 

  11. Presmanes C, De Miguel L, Espada R, Alvarez C, Morales E, Torrado JJ. Effect of PLGA hydrophilia on the drug release and the hypoglucemic activity of different insulin-loaded PLGA microspheres. J Microencapsul. 2011;28(8):791–8.

    Article  CAS  PubMed  Google Scholar 

  12. Takenaga M, Yamaguchi Y, Ogawa Y, Kitagawa A, Kawai S, Mizushima Y, et al. Administration of optimum sustained-insulin release PLGA microcapsules to spontaneous diabetes-prone BB/WorTky rats. Drug Deliv. 2006;13(2):149–57.

    Article  CAS  PubMed  Google Scholar 

  13. Han Y, Tian H, He P, Chen X, Jing X. Insulin nanoparticle preparation and encapsulation into poly (lactic-co-glycolic acid) microspheres by using an anhydrous system. Int J Pharm. 2009;378(1):159–66.

    Article  CAS  PubMed  Google Scholar 

  14. Sharma G, Van Der Walle CF, Kumar MR. Antacid co-encapsulated polyester nanoparticles for peroral delivery of insulin: development, pharmacokinetics, biodistribution and pharmacodynamics. Int J Pharm. 2013;440(1):99–110.

    Article  CAS  PubMed  Google Scholar 

  15. Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 2001;73(2):121–36.

    Article  CAS  PubMed  Google Scholar 

  16. van de Weert M, Hennink WE, Jiskoot W. Protein instability in poly (lactic-co-glycolic acid) microparticles. Pharm Res. 2000;17(10):1159–67.

    Article  PubMed  Google Scholar 

  17. Lee TH, Wang J, Wang CH. Double-walled microspheres for the sustained release of a highly water soluble drug: characterization and irradiation studies. J Control Release. 2002;83(3):437–52.

    Article  CAS  PubMed  Google Scholar 

  18. Lee WL, Seh YC, Widjaja E, Chong HC, Tan NS, Loo J, et al. Fabrication and drug release study of double-layered microparticles of various sizes. J Pharm Sci. 2012;101(8):2787–97.

    Article  CAS  PubMed  Google Scholar 

  19. Rahman NA, Mathiowitz E. Localization of bovine serum albumin in double-walled microspheres. J Control Release. 2004;94(1):163–75.

    Article  CAS  PubMed  Google Scholar 

  20. Tan EC, Lin R, Wang CH. Fabrication of double-walled microspheres for the sustained release of doxorubicin. J Colloid Interface Sci. 2005;291(1):135–43.

    Article  CAS  PubMed  Google Scholar 

  21. Navaei A, Rasoolian M, Momeni A, Emami S, Rafienia M. Double-walled microspheres loaded with meglumine antimoniate: preparation, characterization and in vitro release study. Drug Dev Ind Pharm. 2014;40(6):701–10.

    Article  CAS  PubMed  Google Scholar 

  22. Zheng W. A water-in-oil-in-oil-in-water (W/O/O/W) method for producing drug-releasing, double-walled microspheres. Int J Pharm. 2009;374(1):90–5.

    Article  CAS  PubMed  Google Scholar 

  23. Devrim B, Bozkir A. Preparation and evaluation of double-walled microparticles prepared with a modified water-in-oil-in-oil-in-water (w1/o/o/w3) method. J Microencapsul. 2013;30(8):741–54.

    Article  CAS  PubMed  Google Scholar 

  24. Sah H. A new strategy to determine the actual protein content of poly (lactide-co-glycolide) microspheres. J Pharm Sci. 1997;86(11):1315–8.

    Article  CAS  PubMed  Google Scholar 

  25. Sah H. Protein instability toward organic solvent/water emulsification: implications for protein microencapsulation into microspheres. PDA J Pharm Sci Technol. 1999;53(1):3–10.

    CAS  PubMed  Google Scholar 

  26. Sturesson C, Carlfors J. Incorporation of protein in PLG-microspheres with retention of bioactivity. J Control Release. 2000;67(2):171–8.

    Article  CAS  PubMed  Google Scholar 

  27. Sah H. Microencapsulation techniques using ethyl acetate as a dispersed solvent: effects of its extraction rate on the characteristics of PLGA microspheres. J Control Release. 1997;47(3):233–45.

    Article  CAS  Google Scholar 

  28. Leach K. Effect of manufacturing conditions on the formation of double-walled polymer microspheres. J Microencapsul. 1999;16(2):153–67.

    Article  CAS  PubMed  Google Scholar 

  29. Yan C, Resau JH, Hewetson J, West M, Rill WL, Kende M. Characterization and morphological analysis of protein-loaded poly (lactide-co-glycolide) microparticles prepared by water-in-oil-in-water emulsion technique. J Control Release. 1994;32(3):231–41.

    Article  CAS  Google Scholar 

  30. Ghaderi R, Sturesson C, Carlfors J. Effect of preparative parameters on the characteristics of poly (d, l-lactide-co-glycolide) microspheres made by the double emulsion method. Int J Pharm. 1996;141(1):205–16.

    Article  CAS  Google Scholar 

  31. Xiao CD, Shen XC, Tao L. Modified emulsion solvent evaporation method for fabricating core–shell microspheres. Int J Pharm. 2013;452(1):227–32.

    Article  CAS  PubMed  Google Scholar 

  32. Mitranić I, Stevanović M, Nedeljković B, Ignjatović N, Uskoković D. Controllable synthesis of horseradish peroxidase loaded poly (D, L-lactide) nanospheres. J Bionanosci. 2009;3(1):22–32.

    Article  Google Scholar 

  33. Ghassemi AH, Van Steenbergen MJ, Talsma H, Van Nostrum CF, Jiskoot W, Crommelin DJA, et al. Preparation and characterization of protein loaded microspheres based on a hydroxylated aliphatic polyester, poly (lactic-co-hydroxymethyl glycolic acid). J Control Release. 2009;138(1):57–63.

    Article  CAS  PubMed  Google Scholar 

  34. Panyam J, Dali MM, Sahoo SK, Ma W, Chakravarthi SS, Amidon GL, et al. Polymer degradation and in vitro release of a model protein from poly (D, L-lactide-co-glycolide) nano-and microparticles. J Control Release. 2003;92(1):173–87.

    Article  CAS  PubMed  Google Scholar 

  35. Igartua M, Hernandez RM, Esquisabel A, Gascon AR, Calvo MB, Pedraz JL. Influence of formulation variables on the in-vitro release of albumin from biodegradable microparticulate systems. J Microencapsul. 1997;14(3):349–56.

    Article  CAS  PubMed  Google Scholar 

  36. Batycky RP, Hanes J, Langer R, Edwards DA. A theoretical model of erosion and macromolecular drug release from biodegrading microspheres. J Pharm Sci. 1997;86(12):1464–77.

    Article  CAS  PubMed  Google Scholar 

  37. Hrynyk M, Martins-Green M, Barron AE, Neufeld RJ. Sustained prolonged topical delivery of bioactive human insulin for potential treatment of cutaneous wounds. Int J Pharm. 2010;398(1):146–54.

    Article  CAS  PubMed  Google Scholar 

  38. Doolaanea AA, Ismail AF, Nor NH, Mohamed F. Effect of surfactants on plasmid DNA stability and release from poly (D, L-lactide-co-glycolide) microspheres. Trop J Pharm Res. 2015;14(10):1769–78.

    Article  Google Scholar 

  39. Ubaidulla U, Khar RK, Ahmad FJ, Sultana Y, Panda AK. Development and characterization of chitosan succinate microspheres for the improved oral bioavailability of insulin. J Pharm Sci. 2007;96(11):3010–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank International Islamic University Malaysia for providing financial assistance during this work through the project No. EDW B 14-217-1102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokhlesur M. Rahman.

Ethics declarations

Declaration of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansary, R.H., Rahman, M.M., Awang, M.B. et al. Preparation, characterization, and in vitro release studies of insulin-loaded double-walled poly(lactide-co-glycolide) microspheres. Drug Deliv. and Transl. Res. 6, 308–318 (2016). https://doi.org/10.1007/s13346-016-0278-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-016-0278-y

Keywords

Navigation