Skip to main content
Log in

The effect of a tertiary bile acid, taurocholic acid, on the morphology and physical characteristics of microencapsulated probucol: potential applications in diabetes: a characterization study

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

In recent studies, we designed multi-compartmental microcapsules as a platform for the targeted oral delivery of lipophilic drugs in an animal model of type 2 diabetes (T2D). Probucol (PB) is a highly lipophilic, antihyperlipidemic drug with potential antidiabetic effects. PB has low bioavailability and high inter-individual variations in absorption, which limits its clinical applications. In a new study, the bile acid, taurocholic acid (TCA), exerted permeation enhancing effects in vivo. Accordingly, this study aimed to design and characterize TCA-based PB microcapsules and examine the effects of TCA on the microcapsules’ morphology, stability, and release profiles. Microcapsules were prepared using the polymer sodium alginate (SA). Two types of microcapsules were produced, one without TCA (PB-SA, control) and one with TCA (PB-TCA-SA, test). Microcapsules were studied in terms of morphology, surface structure and composition, size, drug contents, cross-sectional imaging (using microtomography (Micro-CT) analysis), Zeta potential, thermal and chemical profiles, rheological parameters, swelling, mechanical strength, and release studies at various temperature and pH values. The production yield and the encapsulation efficiency were also studied together with in vitro efficacy testing of cell viability at various glucose concentrations and insulin and TNF-α production using clonal-mouse pancreatic β-cells. PB-TCA-SA microcapsules showed uniform structure and even distribution of TCA within the microcapsules. Drug contents, Zeta potential, size, rheological parameters, production yield, and the microencapsulation efficiency remained similar after TCA addition. In vitro testing showed PB-TCA-SA microcapsules improved β-cell survival under hyperglycemic states and reduced the pro-inflammatory cytokine TNF-α while increasing insulin secretions compared with PB-SA microcapsules. PB-TCA-SA microcapsules also showed good stability, better mechanical (p < 0.01) and swelling (p < 0.01) characteristics, and optimized controlled release at pH 7.8 (p < 0.01) compared with control, suggesting desirable targeted release properties and potential applications in the oral delivery of PB in T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Al-Salami H, Kansara H, King J, Morar B, Jayathilaka B, Fawcett PJ, et al. Bile acids: a bitter sweet remedy for diabetes. N Z Pharm J. 2007;27(10):17–20.

    Google Scholar 

  2. Calasan J, Al-Salami H, Mikov M. Bile acids and probiotics could help treating diabetes. Febs Journal. 2012;279:267.

  3. Negrulj R, Mooranian A, Al-Salami H. Potentials and limitations of bile acids in type 2 diabetes mellitus: applications of microencapsulation as a novel oral delivery system. J Endocrinol Diabetes Mellitus. 2013;1(2):49–59.

  4. Berger E, Haller D. Structure-function analysis of the tertiary bile acid TUDCA for the resolution of endoplasmic reticulum stress in intestinal epithelial cells. Biochem Biophys Res Commun. 2011;409(4):610–5.

    Article  CAS  PubMed  Google Scholar 

  5. Beilke LD, Aleksunes LM, Holland RD, Besselsen DG, Beger RD, Klaassen CD, et al. Constitutive androstane receptor-mediated changes in bile acid composition contributes to hepatoprotection from lithocholic acid-induced liver injury in mice. Drug Metab Dispos Biol Fate Chem. 2009;37(5):1035–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sievanen E. Exploitation of bile acid transport systems in prodrug design. Molecules. 2007;12(8):1859–89.

    Article  CAS  PubMed  Google Scholar 

  7. Mikov M, Boni NS, Al-Salami H, Kuhajda K, Kevresan S, Fawcett JP. Pharmacokinetics and hypoglycaemic effect of 3 alpha, 7 alpha-dihydroxy-12-oxo-5beta-cholanate (MKC) in diabetic rat. Febs J. 2006;273:210.

  8. Mikov M, Boni NS, Al-Salami H, Kuhajda K, Kevresan S, Golocorbin-Kon S, et al. Bioavailability and hypoglycemic activity of the semisynthetic bile acid salt, sodium 3alpha,7alpha-dihydroxy-12-oxo-5beta-cholanate, in healthy and diabetic rats. Eur J Drug Metab Pharmacokinet. 2007;32(1):7–12.

    Article  CAS  PubMed  Google Scholar 

  9. Al-Salami H, Butt G, Fawcett JP, Tucker IG, Golocorbin-Kon S, Mikov M. Probiotic treatment reduces blood glucose levels and increases systemic absorption of gliclazide in diabetic rats. Eur J Drug Metab Pharmacokinet. 2008;33(2):101–6.

    Article  CAS  PubMed  Google Scholar 

  10. Mikov M, Al-Salami H, Golocorbin-Kon S, Skrbic R, Raskovic A, Fawcett JP. The influence of 3alpha,7alpha-dihydroxy-12-keto-5beta-cholanate on gliclazide pharmacokinetics and glucose levels in a rat model of diabetes. Eur J Drug Metab Pharmacokinet. 2008;33(3):137–42.

    Article  CAS  PubMed  Google Scholar 

  11. Al-Salami H, Butt G, Tucker I, Golocorbin-Kon S, Mikov M. Probiotics decreased the bioavailability of the bile acid analog, monoketocholic acid, when coadministered with gliclazide, in healthy but not diabetic rats. Eur J Drug Metab Pharmacokinet. 2012;37(2):99–108.

    Article  CAS  PubMed  Google Scholar 

  12. Mikov M A-SH, Golocorbin-Kon G. Potentials and limitations of bile acids and probiotics in diabetes mellitus. 2012;365–402.

  13. Al-Salami H, Butt G, Tucker I, Mikov M. Influence of the semisynthetic bile acid MKC on the ileal permeation of gliclazide in vitro in healthy and diabetic rats treated with probiotics. Methods Find Exp Clin Pharmacol. 2008;30(2):107–13.

    Article  CAS  PubMed  Google Scholar 

  14. Al-Salami H, Butt G, Tucker I, Skrbic R, Golocorbin-Kon S, Mikov M. Probiotic pre-treatment reduces gliclazide permeation (ex vivo) in healthy rats but increases it in diabetic rats to the level seen in untreated healthy rats. Arch Drug Inf. 2008;1(1):35–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Al-Salami H, Butt G, Tucker IG, Mikov M. The influence of pre-treatment with probiotics on the in vitro ileal permeation of the antidiabetic drug gliclazide, in healthy and diabetic rats. Drug Metab Rev. 2008;40:81–2.

    Google Scholar 

  16. Al-Salami H, Grant B, Ian T, Mikov M. The influence of probiotics pre-treatment, on the ileal permeation of gliclazide, in healthy and diabetic rats. Arch Drug Inf. 2008;1(1):35–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Al-Salami H, Butt G, Tucker I, Fawcett PJ, Golocorbin-Kon S, Mikov I, et al. Gliclazide reduces MKC intestinal transport in healthy but not diabetic rats. Eur J Drug Metab Pharmacokinet. 2009;34(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  18. Mooranian A, Negrulj R, Chen-Tan N, Al-Sallami HS, Fang Z, Mukkur T, et al. Microencapsulation as a novel delivery method for the potential antidiabetic drug, Probucol. Drug Des Dev Ther. 2014;8:1221–30.

    CAS  Google Scholar 

  19. Mooranian A, Negrulj R, Chen-Tan N, Al-Sallami HS, Fang Z, Mukkur T, et al. Novel artificial cell microencapsulation of a complex gliclazide-deoxycholic bile acid formulation: a characterization study. Drug Des Dev Ther. 2014;8:1003.

    Google Scholar 

  20. Mooranian A, Negrulj R, Al-Sallami HS, Fang Z, Mikov M, Golocorbin-Kon S, et al. Probucol release from novel multicompartmental microcapsules for the oral targeted delivery in type 2 diabetes. AAPS PharmSciTech. 2014;16(1):45–52.

  21. Mooranian A, Negrulj R, Arfuso F, Al-Salami H. Characterization of a novel bile acid-based delivery platform for microencapsulated pancreatic β-cells. Art Cells Nanomed Biotechnol. 2014;11:1–7.

    Google Scholar 

  22. Mooranian A, Negrulj R, Mathavan S, Martinez J, Sciarretta J, Chen-Tan N, et al. An advanced microencapsulated system: a platform for optimized oral delivery of antidiabetic drug-bile acid formulations. Pharm Dev Technol. 2014;1–8.

  23. Mooranian A, Negrulj R, Mathavan S, Martinez J, Sciarretta J, Chen-Tan N, et al. Stability and release kinetics of an advanced gliclazide-cholic acid formulation: the use of artificial-cell microencapsulation in slow release targeted oral delivery of antidiabetics. J Pharm Innov. 2014;9(2):150–157.

  24. Park K, Ki Lee S, Hyun Son D, Ah Park S, Kim K, Won Chang H, et al. The attenuation of experimental lung metastasis by a bile acid acylated-heparin derivative. Biomaterials. 2007;28(16):2667–76.

    Article  CAS  PubMed  Google Scholar 

  25. Eom JS, Koh KS, Al-Hilal TA, Park JW, Jeon OC, Moon HT, et al. Antithrombotic efficacy of an oral low molecular weight heparin conjugated with deoxycholic asset on microsurgical anastomosis in rats. Thromb Res. 2010;126(3):e220–4.

    Article  CAS  PubMed  Google Scholar 

  26. Fakhoury M, Negrulj R, Mooranian A, Al-Salami H. Inflammatory bowel disease: clinical aspects and treatments. J Inflamm Res. 2014;7:113–20.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Mooranian A, Negrulj R, Mikov M, Golocorbin-Kon S, Arfuso F, Al-Salami H. Novel chenodeoxycholic acid-sodium alginate matrix in the microencapsulation of the potential antidiabetic drug, probucol. An in vitro study. J Microencapsul. 2015:1–9.

  28. Lee E, Kim Y-S, Bae SM, Kim SK, Jin S, Chung SW, et al. Polyproline-type helical-structured low-molecular weight heparin (LMWH)-taurocholate conjugate as a new angiogenesis inhibitor. Int J Cancer. 2009;124(12):2755–65.

    Article  CAS  PubMed  Google Scholar 

  29. Khatun Z, Nurunnabi M, Reeck GR, Cho KJ, Lee YK. Oral delivery of taurocholic acid linked heparin-docetaxel conjugates for cancer therapy. J Control Release Off J Control Release Soc. 2013;170(1):74–82.

    Article  CAS  Google Scholar 

  30. Negrulj R, Mooranian A, Chen-Tan N, Al-Sallami HS, Mikov M, Golocorbin-Kon S, et al. Swelling, mechanical strength, and release properties of probucol microcapsules with and without a bile acid, and their potential oral delivery in diabetes. Artif Cells Nanomed Biotechnol. 2015;26:1–8.

    Article  Google Scholar 

  31. Shimizu H, Uehara Y, Shimomura Y, Tanaka Y, Kobayashi I. Probucol attenuated hyperglycemia in multiple low-dose streptozotocin-induced diabetic mice. Life Sci. 1991;49(18):1331–8.

    Article  CAS  PubMed  Google Scholar 

  32. Wu R, Zhang W, Liu B, Gao J, Xiao X-Q, Zhang F, et al. Probucol ameliorates the development of nonalcoholic steatohepatitis in rats fed high-fat diets. Dig Dis Sci. 2013;58(1):163–71.

    Article  CAS  PubMed  Google Scholar 

  33. Yamashita S, Matsuzawa Y. Where are we with probucol: a new life for an old drug? Atherosclerosis. 2009;207(1):16–23.

    Article  CAS  PubMed  Google Scholar 

  34. Chang TM. Pharmaceutical and therapeutic applications of artificial cells including microencapsulation. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik eV. 1998;45(1):3–8.

    Article  CAS  Google Scholar 

  35. Hamaguchi K, Gaskins HR, Leiter EH. NIT-1, a pancreatic beta-cell line established from a transgenic NOD/Lt mouse. Diabetes. 1991;40(7):842–9.

    Article  CAS  PubMed  Google Scholar 

  36. Al-Salami H, Butt G, Tucker I, Mikov M. Influence of the semisynthetic bile acid (MKC) on the ileal permeation of gliclazide in healthy and diabetic rats. Methods Find Exp Clin Pharmacol. 2008;30(2):107–13.

    Article  CAS  PubMed  Google Scholar 

  37. Mooranian A, Negrulj R, Chen-Tan N, Fakhoury M, Arfuso F, Jones F, et al. Advanced bile acid-based multi-compartmental microencapsulated pancreatic beta-cells integrating a polyelectrolyte-bile acid formulation, for diabetes treatment. Art Cells Nanomed Biotechnol. 2014;1–8.

  38. Mooranian A, Negrulj R, Chen-Tan N, Watts GF, Arfuso F, Al-Salami H. An optimized probucol microencapsulated formulation integrating a secondary bile acid (deoxycholic acid) as a permeation enhancer. Drug Des Dev Ther. 2014;8:1673–83.

    CAS  Google Scholar 

  39. Mooranian A, Negrulj R, Al-Sallami HS, Fang Z, Mikov M, Golocorbin-Kon S, et al. Release and swelling studies of an innovative antidiabetic-bile acid microencapsulated formulation, as a novel targeted therapy for diabetes treatment. J Microencapsul. 2015;1-8.

  40. Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 2001;73(2):121-36.

    Article  CAS  PubMed  Google Scholar 

  41. Altaf M. Ionic gelation controlled drug delivery systems for gastric-mucoadhesive microcapsules of captopril. Indian J Pharm Sci. 2008;70(5):655.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Xie HG, Li XX, Lv GJ, Xie WY, Zhu J, Luxbacher T, et al. Effect of surface wettability and charge on protein adsorption onto implantable alginate‐chitosan‐alginate microcapsule surfaces. J Biomed Mater Res A. 2010;92(4):1357–65.

    PubMed  Google Scholar 

  43. Ajun W, Yan S, Li G, Huili L. Preparation of aspirin and probucol in combination loaded chitosan nanoparticles and in vitro release study. Carbohydr Polym. 2009;75(4):566–74.

    Article  Google Scholar 

  44. Thybo P, Pedersen BL, Hovgaard L, Holm R, Müllertz A. Characterization and physical stability of spray dried solid dispersions of probucol and PVP-K30*. Pharm Dev Technol. 2008;13(5):375–86.

    Article  CAS  PubMed  Google Scholar 

  45. Batta AK, Aggarwal SK, Salen G, Shefer S. Selective reduction of oxo bile acids: synthesis of 3 beta-, 7 beta-, and 12 beta-hydroxy bile acids. J Lipid Res. 1991;32(6):977–83.

    CAS  PubMed  Google Scholar 

  46. Soares J, Santos J, Chierice G, Cavalheiro E. Thermal behavior of alginic acid and its sodium salt. Eclética Quím. 2004;29(2):57–64.

    Article  CAS  Google Scholar 

  47. Takka S, Cali AG. Bile salt-reinforced alginate-chitosan beads. Pharm Dev Technol. 2012;17(1):23–9.

    Article  CAS  PubMed  Google Scholar 

  48. Yang Y, Campanella OH, Hamaker BR, Zhang G, Gu Z. Rheological investigation of alginate chain interactions induced by concentrating calcium cations. Food Hydrocoll. 2013;30(1):26–32.

    Article  Google Scholar 

  49. Bonino CA, Samorezov JE, Jeon O, Alsberg E, Khan SA. Real-time in situ rheology of alginate hydrogel photocrosslinking. Soft Matter. 2011;7(24):11510–7.

    Article  CAS  Google Scholar 

  50. Pamies R, Schmidt RR, Martínez MDCL, Torre JGDL. The influence of mono and divalent cations on dilute and non-dilute aqueous solutions of sodium alginates. Carbohydr Polym. 2010;80(1):248–53.

    Article  CAS  Google Scholar 

  51. Legrand J, Dumont E, Comiti J, Fayolle F. Diffusion coefficients of ferricyanide ions in polymeric solutions—comparison of different experimental methods. Electrochim Acta. 2000;45(11):1791–803.

    Article  CAS  Google Scholar 

  52. Lalic-Popovic M, Vasovic V, Milijasevic B, Golocorbin-Kon S, Al-Salami H, Mikov M. Deoxycholic acid as a modifier of the permeation of gliclazide through the blood brain barrier of a rat. J Diabetes Res. 2013;2013:598603.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Wu T, Bound MJ, Standfield SD, Gedulin B, Jones KL, Horowitz M, et al. Effects of rectal administration of taurocholic acid on glucagon-like peptide-1 and peptide YY secretion in healthy humans. Diabetes Obes Metab. 2013;15(5):474–7.

    Article  CAS  PubMed  Google Scholar 

  54. Adrian TE, Gariballa S, Parekh KA, Thomas SA, Saadi H, Al Kaabi J, et al. Rectal taurocholate increases L cell and insulin secretion, and decreases blood glucose and food intake in obese type 2 diabetic volunteers. Diabetologia. 2012;55(9):2343–7.

    Article  CAS  PubMed  Google Scholar 

  55. Wu T, Bound MJ, Standfield SD, Jones KL, Horowitz M, Rayner CK. Effects of taurocholic acid on glycemic, glucagon-like peptide-1, and insulin responses to small intestinal glucose infusion in healthy humans. J Clin Endocrinol Metab. 2013;98(4):E718–22.

    Article  CAS  PubMed  Google Scholar 

  56. Fukuda M, Ikegami H, Kawaguchi Y, Sano T, Ogihara T. Antioxidant, probucol, can inhibit the generation of hydrogen peroxide in islet cells induced by macrophages and prevent islet cell destruction in NOD mice. Biochem Biophys Res Commun. 1995;209(3):953–8.

    Article  CAS  PubMed  Google Scholar 

  57. Gorogawa S, Kajimoto Y, Umayahara Y, Kaneto H, Watada H, Kuroda A, et al. Probucol preserves pancreatic beta-cell function through reduction of oxidative stress in type 2 diabetes. Diabetes Res Clin Pract. 2002;57(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  58. Liu JH, Liu DF, Wang NN, Lin HL, Mei X. Possible role for the thioredoxin system in the protective effects of probucol in the pancreatic islets of diabetic rats. Clin Exp Pharmacol Physiol. 2011;38(8):528–33.

    Article  CAS  PubMed  Google Scholar 

  59. Düfer M, Hörth K, Wagner R, Schittenhelm B, Prowald S, Wagner TF, et al. Bile acids acutely stimulate insulin secretion of mouse β-cells via farnesoid X receptor activation and KATP channel inhibition. Diabetes. 2012;61(6):1479–89.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Renga B, Mencarelli A, Vavassori P, Brancaleone V, Fiorucci S. The bile acid sensor FXR regulates insulin transcription and secretion. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2010;1802(3):363–72.

    Article  CAS  Google Scholar 

  61. Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10(3):167–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Prawitt J, Caron S, Staels B. Bile acid metabolism and the pathogenesis of type 2 diabetes. Curr Diab Rep. 2011;11(3):160–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. EMBO J. 2006;25(7):1419–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Perez MJ, Briz O. Bile-acid-induced cell injury and protection. World J Gastroenterol WJG. 2009;15(14):1677–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Australian Postgraduate Award (APA) + Curtin Research Scholarship (CRS) for their support. The authors also acknowledge the CHIRI and the use of laboratory equipment and the scientific and technical assistance of Curtin University Electron Microscope Facility, which has been partially funded by the University, State, and Commonwealth Governments. The authors also acknowledge the Pharmaceutical Technology Laboratory (Curtin School of Pharmacy). The authors are grateful to the Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia and St. Vincent’s Institute of Medical Research (Victoria) for supplying the NIT-1 β-cells.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani Al-Salami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mooranian, A., Negrulj, R., Arfuso, F. et al. The effect of a tertiary bile acid, taurocholic acid, on the morphology and physical characteristics of microencapsulated probucol: potential applications in diabetes: a characterization study. Drug Deliv. and Transl. Res. 5, 511–522 (2015). https://doi.org/10.1007/s13346-015-0248-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-015-0248-9

Keywords

Navigation