Skip to main content

Advertisement

Log in

Celecoxib nanosuspension: single-step fabrication using a modified nanoprecipitation method and in vivo evaluation

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Conventional nanoprecipitation process involves addition of water miscible organic solvent containing drug to an aqueous phase containing hydrophilic surfactants to yield drug nanosuspension. However, nanosuspensions obtained with conventional nanoprecipitation process have very low colloidal stability. The objective of the present investigation was to fabricate drug nanosuspensions with good colloidal stability using a modified nanoprecipitation method. Celecoxib, a hydrophobic anti-inflammatory agent with low oral bioavailability, was used as a model drug for this investigation. The conventional nanoprecipitation method did not result in the nanosizing of the celecoxib. Incorporation of surface active lipophiles such as Labrafil 1944 CS (oleolyl macrogol glycerides) along with hydrophilic surfactants during nanoprecipitation process could successfully nanosize the celecoxib. The particle size of the nanosuspensions was influenced by the various parameters of the nanoprecipitation process and also by the concentration of the lipophilic stabilizer. The celecoxib nanosuspension was characterized by transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction. Saturation solubility of celecoxib was dramatically improved in pH 1.2 buffer when formulated as nanosuspensions. The celecoxib nanosuspesnsion showed significantly higher in vitro dissolution rate and in vivo anti-inflammatory activity as compared to that of celecoxib-marketed formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Müller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47:3–19.

    Article  PubMed  Google Scholar 

  2. Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol. 2004;56:827–40.

    Article  CAS  PubMed  Google Scholar 

  3. Keck CM, Müller RH. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm. 2006;62:3–16.

    Article  CAS  PubMed  Google Scholar 

  4. Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18:113–20.

    Article  CAS  PubMed  Google Scholar 

  5. Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3:785–96.

    Article  CAS  PubMed  Google Scholar 

  6. Möschwitzer J, Achleitner G, Pomper H, Müller RH. Development of an intravenously injectable chemically stable aqueous omeprazole formulation using nanosuspension technology. Eur J Pharm Biopharm. 2004;58:615–9.

    Article  PubMed  Google Scholar 

  7. Liu Y, Huang L, Liu F. Paclitaxel nanocrystals for overcoming multidrug resistance in cancer. Mol Pharm. 2010;7:863–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kobierski S, Ofori-Kwakye K, Müller RH, Keck CM. Resveratrol nanosuspensions for dermal application—production, characterization, and physical stability. Pharmazie. 2009;64:741–7.

    CAS  PubMed  Google Scholar 

  9. Pardeike J, Müller RH. Dermal and ocular safety of the new phospholipase A2 inhibitors PX-18 and PX-13 formulated as drug nanosuspension. J Biomed Nanotechnol. 2009;5:437–44.

    Article  CAS  PubMed  Google Scholar 

  10. Kassem MA, Abdel Rahman AA, Ghorab MM, Ahmed MB, Khalil RM. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int J Pharm. 2007;340:126–33.

    Article  CAS  PubMed  Google Scholar 

  11. Chiang PC, Alsup JW, Lai Y, Hu Y, Heyde BR, Tung D. Evaluation of aerosol delivery of nanosuspension for pre-clinical pulmonary drug delivery. Nanoscale Res Lett. 2009;4:254–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Shubar HM, Lachenmaier S, Heimesaat MM, Lohman U, Mauludin R, Mueller RH, et al. SDS-coated atovaquone nanosuspensions show improved therapeutic efficacy against experimental acquired and reactivated toxoplasmosis by improving passage of gastrointestinal and blood–brain barriers. J Drug Target. 2011;19:114–24.

    Article  CAS  PubMed  Google Scholar 

  13. Sjöström B, Kronberg B, Carlfors J. A method for the preparation of submicron particles of sparingly water-soluble drugs by precipitation in oil-in-water emulsions. I: influence of emulsification and surfactant concentration. J Pharm Sci. 1993;82:579–83.

    Article  PubMed  Google Scholar 

  14. Sjöström B, Bergenståhl B, Kronberg B. A method for the preparation of submicron particles of sparingly water-soluble drugs by precipitation in oil-in-water emulsions. II: influence of the emulsifier, the solvent, and the drug substance. J Pharm Sci. 1993;82:584–9.

    Article  PubMed  Google Scholar 

  15. Trotta M, Gallarate M, Pattarino F, Morel S. Emulsions containing partially water-miscible solvents for the preparation of drug nanosuspensions. J Control Release. 2001;76:119–28.

    Article  CAS  PubMed  Google Scholar 

  16. Dolenc A, Kristl J, Baumgartner S, Planinsek O. Advantages of celecoxib nanosuspension formulation and transformation into tablets. Int J Pharm. 2009;376:204–12.

    Article  CAS  PubMed  Google Scholar 

  17. Xia D, Quan P, Piao H, Piao H, Sun S, Yin Y, et al. Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhancement of dissolution and oral bioavailability. Eur J Pharm Sci. 2010;40:325–34.

    Article  CAS  PubMed  Google Scholar 

  18. Shekunov BY, Chattopadhyay P, Seitzinger J, Huff R. Nanoparticles of poorly water-soluble drugs prepared by supercritical fluid extraction of emulsions. Pharm Res. 2006;23:196–204.

    Article  CAS  PubMed  Google Scholar 

  19. Trotta M, Gallarate M, Carlotti ME, Morel S. Preparation of griseofulvin nanoparticles from water-dilutable microemulsions. Int J Pharm. 2003;254:235–42.

    Article  CAS  PubMed  Google Scholar 

  20. Margulis-Goshen K, Kesselman E, Danino D, Magdassi S. Formation of celecoxib nanoparticles from volatile microemulsions. Int J Pharm. 2010;393:230–7.

    Article  CAS  PubMed  Google Scholar 

  21. Ali HS, York P, Blagden N. Preparation of hydrocortisone nanosuspension through a bottom–up nanoprecipitation technique using microfluidic reactors. Int J Pharm. 2009;375:107–13.

    Article  CAS  PubMed  Google Scholar 

  22. Subramanian N, Ray S, Ghosal SK, Bhadra R, Moulik SP. Formulation design of self-microemulsifying drug delivery systems for improved oral bioavailability of celecoxib. Biol Pharm Bull. 2004;27:1993–9.

    Article  CAS  PubMed  Google Scholar 

  23. Nagarsenker MS, Joshi MS. Celecoxib-cyclodextrin systems: characterization and evaluation of in vitro and in vivo advantage. Drug Dev Ind Pharm. 2005;31:169–78.

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Sun C, Hao Y, Jiang T, Zheng L, Wang S. Mechanism of dissolution enhancement and bioavailability of poorly water soluble celecoxib by preparing stable amorphous nanoparticles. J Pharm Pharm Sci. 2010;13:589–606.

    CAS  PubMed  Google Scholar 

  25. Margulis-Goshen K, Weitman M, Major DT, Magdassi S. Inhibition of crystallization and growth of celecoxib nanoparticles formed from volatile microemulsions. J Pharm Sci. 2011;100:4390–400.

    Article  CAS  Google Scholar 

  26. Joshi M, Patravale V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int J Pharm. 2008;346:124–32.

    Article  CAS  PubMed  Google Scholar 

  27. Higuchi WI, Misra J. Physical degradation of emulsions via the molecular diffusion route and the possible prevention thereof. J Pharm Sci. 1962;51:459–66.

    Article  CAS  PubMed  Google Scholar 

  28. Kabalnov AS, Pertzov AV, Shchukin ED. Ostwald ripening in two-component disperse phase systems: application to emulsion stability. Colloids Surf. 1987;24:19–32.

    Article  CAS  Google Scholar 

  29. Lindfors L, Skantze P, Skantze U, Rasmusson M, Zackrisson A, Olsson U. Amorphous drug nanosuspensions. 1. Inhibition of Ostwald ripening. Langmuir. 2006;22:906–10.

    Article  CAS  PubMed  Google Scholar 

  30. Balakrishnan P, Lee BJ, Oh DH, Kim JO, Lee YI, Kim DD, et al. Enhanced oral bioavailability of Coenzyme Q10 by self-emulsifying drug delivery systems. Int J Pharm. 2009;374:66–72.

    Article  CAS  PubMed  Google Scholar 

  31. Yoo HS. Preparation of biodegradable polymeric hollow microspheres using O/O/W emulsion stabilized by Labrafil. Colloids Surf B: Biointerfaces. 2006;52:47–51.

    Article  CAS  PubMed  Google Scholar 

  32. Wang S, Sun M, Ping Q. Enhancing effect of Labrafac Lipophile WL 1349 on oral bioavailability of hydroxysafflor yellow A in rats. Int J Pharm. 2008;358:198–204.

    Article  CAS  PubMed  Google Scholar 

  33. Jain AS, Date AA, Nagarsenker MS. Design, characterization and evaluation of anti-epileptic activity of nanoprecipitating preconcnetrate of carbamazepine. Drug Deliv Lett. 2013;3:61–9.

    Article  CAS  Google Scholar 

  34. Dixit RP, Nagarsenker MS. Self-nanoemulsifying granules of ezetimibe: design, optimization and evaluation. Eur J Pharm Sci. 2008;35:183–92.

    Article  CAS  PubMed  Google Scholar 

  35. Date AA, Desai N, Dixit R, Nagarsenker MS. Self-nanoemulsifying drug delivery systems (SNEDDS): formulation insights, applications and advances. Nanomedicine (Lond). 2010;5:1596–616.

    Article  Google Scholar 

Download references

Acknowledgments

Authors are thankful to CAD Pharma Inc, Aurobindo Pharmaceuticals Pvt. Ltd., Gangwal Chemicals Pvt. Ltd., Gattefosse India Ltd., BASF India Ltd., Sasol GmBH, and Phospholipid GmBH, Germany, for providing gift samples of drug and excipients. Authors are also thankful to Tata Institute of Fundamental Research, Mumbai, India, for proving XRD, SEM, and DSC facilities and to Jaslok Hospital for TEM facilities. Anju Malakani is thankful to AICTE for junior research fellowship.

Conflict of interest

The authors have no conflict of interest in any part of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhijit A. Date or Darshana Hegde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malkani, A., Date, A.A. & Hegde, D. Celecoxib nanosuspension: single-step fabrication using a modified nanoprecipitation method and in vivo evaluation. Drug Deliv. and Transl. Res. 4, 365–376 (2014). https://doi.org/10.1007/s13346-014-0201-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-014-0201-3

Keywords

Navigation