Skip to main content
Log in

Controlled release of glial cell line-derived neurotrophic factor from poly(ε-caprolactone) microspheres

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Glial cell line-derived neurotrophic factor (GDNF), a growth factor expressed in the central nervous system, promotes the survival of both dopaminergic and motor neurons, making it a promising candidate for neurodegenerative disease therapy. Although GDNF is currently being evaluated in clinical trials for the treatment of Parkinson’s disease (PD), the current delivery method using catheter implantation has certain limitations in terms of delivering GDNF safely and effectively. As a proof of concept, we encapsulated GDNF into poly(ε-caprolactone) (PCL) microspheres to enable controlled drug release for 25 days. First, microspheres were loaded with bovine serum albumin (BSA) to determine the optimal fabrication conditions necessary to achieve the desired release rates of protein. BSA was then used as a carrier protein to preserve GDNF activity during the fabrication process in the presence of organic solvents. GDNF-encapsulated microspheres were created and characterized using scanning electron microscopy. Next, the in vitro release of GDNF along with microsphere morphology was tracked over 25 days. Finally, the bioactivity of the released GDNF was confirmed using PC12 cells. This work demonstrates the potential of such microspheres for the delivery of bioactive GDNF with the end goal of developing a suitable, clinically relevant formulation for injection to appropriate regions of the brain in PD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Parkinson’s Disease Foundation (PDF), Statistics on Parkinson’s. http://www.pdf.org/en/parkinson_statistics. Accessed May 2013.

  2. Parkinson Society British Columbia, Parkinson’s disease fact sheet. http://www.parkinson.bc.ca/Parkinsons-Disease-Fact-Sheet. Accessed May 2013.

  3. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889–909.

    Article  PubMed  CAS  Google Scholar 

  4. Benowitz LI, Yin YQ. Combinatorial treatments for promoting axon regeneration in the CNS: strategies for overcoming inhibitory signals and activating neurons’ intrinsic growth state. Dev Neurobiol. 2007;67(9):1148–65.

    Article  PubMed  CAS  Google Scholar 

  5. Willerth SM, Sakiyama-Elbert SE. Cell therapy for spinal cord regeneration. Adv Drug Deliv Rev. 2008;60(2):263–76.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Feher J. Quantitative human physiology: an introduction. New York: Elsevier; 2012.

  7. National Institute for Health and Care Excellence. Parkinson’s disease: national clinical guideline for diagnosis and management in primary and secondary care. London: Royal College of Physicians; 2006.

  8. Stewart DA. NICE guideline for Parkinson’s disease. Age Ageing. 2007;36(3):240–2.

    Article  PubMed  Google Scholar 

  9. Willerth SM, Sakiyama-Elbert SE. Approaches to neural tissue engineering using scaffolds for drug delivery. Adv Drug Deliv Rev. 2007;59(4–5):325–38.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Lindsay RM et al. The therapeutic potential of neurotrophic factors in the treatment of Parkinson’s disease. Exp Neurol. 1993;124(1):103–18.

    Article  PubMed  CAS  Google Scholar 

  11. Lin LFH et al. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993;260(5111):1130–2.

    Article  PubMed  CAS  Google Scholar 

  12. Boyd JG, Gordon T. Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol. 2003;27(3):277–323.

    Article  PubMed  CAS  Google Scholar 

  13. Grondin R, Gash DM. Glial cell line-derived neurotrophic factor (GDNF): a drug candidate for the treatment of Parkinson’s disease. J Neurol. 1998;245:35–42.

    Article  Google Scholar 

  14. Sullivan AM, Opacka-Juffry J, Blunt SB. Long-term protection of the rat nigrostriatal dopaminergic system by glial cell line-derived neurotrophic factor against 6-hydroxydopamine in vivo. Eur J Neurosci. 1998;10(1):57–63.

    Article  PubMed  CAS  Google Scholar 

  15. Kearns CM et al. GDNF protection against 6-OHDA: time dependence and requirement for protein synthesis. J Neurosci. 1997;17(18):7111–8.

    PubMed  CAS  Google Scholar 

  16. Bensadoun JC et al. Comparative study of GDNF delivery systems for the CNS: polymer rods, encapsulated cells, and lentiviral vectors. J Control Release. 2003;87(1–3):107–15.

    Article  PubMed  CAS  Google Scholar 

  17. Gill SS et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med. 2003;9(5):589–95.

    Article  PubMed  CAS  Google Scholar 

  18. Kirik D, Georgievska B, Bjorklund A. Localized striatal delivery of GDNF as a treatment for Parkinson disease. Nat Neurosci. 2004;7(2):105–10.

    Article  PubMed  CAS  Google Scholar 

  19. Kordower JH et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science. 2000;290(5492):767–73.

    Article  PubMed  CAS  Google Scholar 

  20. Morrison PF, Lonser RR, Oldfield EH. Convective delivery of glial cell line-derived neurotrophic factor in the human putamen. J Neurosurg. 2007;107(1):74–83.

    Article  PubMed  Google Scholar 

  21. Salvatore MF et al. Point source concentration of GDNF may explain failure of phase II clinical trial. Exp Neurol. 2006;202(2):497–505.

    Article  PubMed  CAS  Google Scholar 

  22. Bobo RH et al. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A. 1994;91(6):2076–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Taylor H et al. Clearance and toxicity of recombinant methionyl human glial cell line-derived neurotrophic factor (r-metHu GDNF) following acute convection-enhanced delivery into the striatum. PLoS ONE. 2013;8(3):e56186.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Yang YY, Chung TS, Ng NP. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials. 2001;22(3):231–41.

    Article  PubMed  CAS  Google Scholar 

  25. Jameela SR, Suma N, Jayakrishnan A. Protein release from poly(epsilon-caprolactone) microspheres prepared by melt encapsulation and solvent evaporation techniques: a comparative study. J Biomater Sci. 1997;8(6):457–66.

    Article  CAS  Google Scholar 

  26. Goodwin CJ et al. Release of bioactive human growth hormone from a biodegradable material: poly(epsilon-caprolactone). J Biomed Mater Res. 1998;40(2):204–13.

    Article  PubMed  CAS  Google Scholar 

  27. Coccoli V et al. Engineering of poly(epsilon-caprolactone) microcarriers to modulate protein encapsulation capability and release kinetic. J Mater Sci Mater Med. 2008;19(4):1703–11.

    Article  PubMed  CAS  Google Scholar 

  28. Kim JH, Bae YH. Albumin loaded microsphere of amphiphilic poly(ethylene glycol)/poly(alpha-ester) multiblock copolymer. Eur J Pharm Sci. 2004;23(3):245–51.

    Article  PubMed  CAS  Google Scholar 

  29. Yang YY, Chia HH, Chung TS. Effect of preparation temperature on the characteristics and release profiles of PLGA microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. J Control Release. 2000;69(1):81–96.

    Article  PubMed  CAS  Google Scholar 

  30. Sah HK, Toddywala R, Chien YW. Biodegradable microcapsules prepared by a w/o/w technique: effects of shear force to make a primary w/o emulsion on their morphology and protein release. J Microencapsul. 1995;12(1):59–69.

    Article  PubMed  CAS  Google Scholar 

  31. Pean JM et al. Why does PEG 400 co-encapsulation improve NGF stability and release from PLGA biodegradable microspheres? Pharm Res. 1999;16(8):1294–9.

    Article  PubMed  CAS  Google Scholar 

  32. Mohtaram NK, Montgomery A, Willerth SM. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors. Biomed Mater. 2013;8(2):022001.

    Article  PubMed  Google Scholar 

  33. Aubert-Pouessel A et al. In vitro study of GDNF release from biodegradable PLGA microspheres. J Control Release. 2004;95(3):463–75.

    Article  PubMed  CAS  Google Scholar 

  34. Garbayo E et al. Effective GDNF brain delivery using microspheres—a promising strategy for Parkinson’s disease. J Control Release. 2009;135(2):119–26.

    Article  PubMed  CAS  Google Scholar 

  35. Wood MD et al. GDNF released from microspheres enhances nerve regeneration after delayed repair. Muscle Nerve. 2012;46(1):122–4.

    Article  PubMed  CAS  Google Scholar 

  36. Andrieu-Soler C et al. Intravitreous injection of PLGA microspheres encapsulating GDNF promotes the survival of photoreceptors in the rd1/rd1 mouse. Mol Vis. 2005;11:118–20.

    Google Scholar 

  37. Checa-Casalengua P et al. Retinal ganglion cells survival in a glaucoma model by GDNF/Vit E PLGA microspheres prepared according to a novel microencapsulation procedure. J Control Release. 2011;156(1):92–100.

    Article  PubMed  CAS  Google Scholar 

  38. Wu J, Chunyan L, Wang Z, Cheng W, Zhou N, Wang S, et al. Chitosan–polycaprolactone microspheres as carriers for delivering glial cell line-derived neurotrophic factor. React Funct Polym. 2011;71(9):925–32.

    Article  CAS  Google Scholar 

  39. Jollivet C et al. Long-term effect of intra-striatal glial cell line-derived neurotrophic factor-releasing microspheres in a partial rat model of Parkinson’s disease. Neurosci Lett. 2004;356(3):207–10.

    Article  PubMed  CAS  Google Scholar 

  40. Jollivet C et al. Striatal implantation of GDNF releasing biodegradable microspheres promotes recovery of motor function in a partial model of Parkinson’s disease. Biomaterials. 2004;25(5):933–42.

    Article  PubMed  CAS  Google Scholar 

  41. Sinha VR et al. Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharm. 2004;278(1):1–23.

    Article  PubMed  CAS  Google Scholar 

  42. Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. J Control Release. 2003;90(3):261–80.

    Article  PubMed  CAS  Google Scholar 

  43. Benoit JP et al. Development of microspheres for neurological disorders: from basics to clinical applications. J Control Release. 2000;65(1–2):285–96.

    Article  PubMed  CAS  Google Scholar 

  44. Jaklenec A et al. Novel scaffolds fabricated from protein-loaded microspheres for tissue engineering. Biomaterials. 2008;29(2):185–92.

    Article  PubMed  CAS  Google Scholar 

  45. Yang Y et al. Neurotrophin releasing single and multiple lumen nerve conduits. J Control Release. 2005;104(3):433–46.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Pollock JD, Krempin M, Rudy B. Differential effects of NGF, FGF, EGF, cAMP, and dexamethasone on neurite outgrowth and sodium channel expression in PC12 cells. J Neurosci. 1990;10(8):2626–37.

    PubMed  CAS  Google Scholar 

  47. Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132(3):171–83.

    Article  PubMed  CAS  Google Scholar 

  48. Gilley R.M., Tice T.R. Microencapsulation process and products therefrom, U. Patent, Editor 1995: USA

  49. Freiberg S, Zhu X. Polymer microspheres for controlled drug release. Int J Pharm. 2004;282(1–2):1–18.

    Article  PubMed  CAS  Google Scholar 

  50. Ghaderi R, Sturesson C, Carlfors J. Effect of preparative parameters on the characteristics of poly(d,l-lactide-co-glycolide) microspheres made by the double emulsion method. Int J Pharm. 1996;141(1–2):205–16.

    Article  CAS  Google Scholar 

  51. Berkland C, Kim K, Pack DW. Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. J Control Release. 2001;73(1):59–74.

    Article  PubMed  CAS  Google Scholar 

  52. Hamishehkar H et al. The effect of formulation variables on the characteristics of insulin-loaded poly(lactic-co-glycolic acid) microspheres prepared by a single phase oil in oil solvent evaporation method. Colloids Surf B-Biointerfaces. 2009;74(1):340–9.

    Article  PubMed  CAS  Google Scholar 

  53. Bodmeier R, Chen HG. Preparation of biodegradable poly(+/−)lactide microparticles using a spray-drying technique. J Pharm Pharmacol. 1988;40(11):754–7.

    Article  PubMed  CAS  Google Scholar 

  54. Beck KD et al. Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature. 1995;373(6512):339–41.

    Article  PubMed  CAS  Google Scholar 

  55. Dash S et al. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67(3):217–23.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from an NSERC Discovery Grant (S.M.W.) and an NSERC Engage Grant with MedGenesis Therapeutix. They would also like to acknowledge the Advanced Microscopy Facility at the University of Victoria and MedGenesis Therapeutix for their ongoing support of this project.

Conflict of interest

The corresponding author previously held an Engage Grant with MedGenesis Therapeutix, and MedGenesis Therapeutix supported this project via donation of GDNF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Michelle Willerth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agbay, A., Mohtaram, N.K. & Willerth, S.M. Controlled release of glial cell line-derived neurotrophic factor from poly(ε-caprolactone) microspheres. Drug Deliv. and Transl. Res. 4, 159–170 (2014). https://doi.org/10.1007/s13346-013-0189-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-013-0189-0

Keywords

Navigation