Skip to main content
Log in

Zein/polycaprolactone electrospun matrices for localised controlled delivery of tetracycline

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We report the controlled release of the antibiotic tetracycline (Tet) from triple-layered (3L) electrospun matrices consisting of zein or a zein/PCL blend, where the drug was loaded into the central layer with the two outer layers acting as diffusion barriers. These fibrous matrices successfully encapsulated Tet and efficiently inhibited the growth of a clinical isolate, the methicillin-resistant Staphylococcus aureus strain MRSA252, as demonstrated in a modified Kirby–Bauer disc assay over 5 days. Whilst untreated zein fibres are unstable in an aqueous environment, rapidly shrinking due to plasticisation and film formation, blending zein with PCL stabilised the electrospun matrices and prevented them from shrinking. These 3L formulations display sustained antibiotic release and provide a proof of concept for zein-based polymeric matrices as wound dressings to treat or prevent bacterial infection. This is the first demonstration of the controlled release of a clinically used antibiotic from electrospun zein-based matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, et al. Nanostructured fibers via electrospinning. Adv Mater. 2001;13:70–2.

    Article  CAS  Google Scholar 

  2. Wang H-S, Fu G-D, Li X-S. Functional polymeric nanofibers from electrospinning. Recent Pat Nanotech. 2009;3:21–31.

    Article  Google Scholar 

  3. Li D, Xia Y. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 2004;4:933–8.

    Article  CAS  Google Scholar 

  4. Jiang H, Hu Y, Li Y, Zhao P, Zhu K, Chen W. A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Control Release. 2005;108:237–43.

    Article  PubMed  CAS  Google Scholar 

  5. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63:2223–53.

    Article  CAS  Google Scholar 

  6. Pham QP, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 2006;12:1197–211.

    Article  PubMed  CAS  Google Scholar 

  7. Sill TJ, Recum von HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006.

    Article  PubMed  CAS  Google Scholar 

  8. Meinel AJ, Germershaus O, Luhmann T, Merkle HP, Meinel L. Electrospun matrices for localized drug delivery: current technologies and selected biomedical applications. Eur J Pharm Biopharm. 2012;81:1–13.

    Article  PubMed  CAS  Google Scholar 

  9. Goh Y-F, Shakir I, Hussain R. Electrospun fibers for tissue engineering, drug delivery, and wound dressing. J Mater Sci. 2013;48:3027–54.

    Article  CAS  Google Scholar 

  10. Fullana MJ, Wnek GE. Electrospun collagen and its applications in regenerative medicine. Drug Deliv Transl Res. 2012;2:313–22.

    Article  CAS  Google Scholar 

  11. Ji W, Sun Y, Yang F, van den Beucken JJJP, Fan M, Chen Z, et al. Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharm Res. 2011;28:1259–72.

    Article  PubMed  CAS  Google Scholar 

  12. Ignatova M, Rashkov I, Manolova N. Drug-loaded electrospun materials in wound-dressing applications and in local cancer treatment. Expert Opin Drug Deliv. 2013;10:469–83.

    Article  PubMed  CAS  Google Scholar 

  13. Alhusein N, Blagbrough IS, De Bank PA. Electrospun matrices for localised controlled drug delivery: release of tetracycline hydrochloride from layers of polycaprolactone and poly(ethylene-co-vinyl acetate). Drug Deliv Transl Res. 2012;2:477–88.

    Article  CAS  Google Scholar 

  14. Alhusein N, De Bank PA, Blagbrough IS, Bolhuis A. Killing bacteria within biofilms by sustained release of tetracycline from triple-layered electrospun micro/nanofibre matrices of polycaprolactone and poly(ethylene-co-vinyl acetate). Drug Deliv Transl Res. 2013. doi:10.1007/s13346-013-0164-9.

  15. Ruckh TT, Oldinski RA, Carroll DA, Mikhova K, Bryers JD, Popat KC. Antimicrobial effects of nanofiber poly(caprolactone) tissue scaffolds releasing rifampicin. J Mater Sci Mater Med. 2012;23:1411–20.

    Article  PubMed  CAS  Google Scholar 

  16. Lee KY, Jeong L, Kang YO, Lee SJ, Park WH. Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev. 2009;61:1020–32.

    Article  PubMed  CAS  Google Scholar 

  17. Sun Q-S, Dong J, Lin Z-X, Yang B, Wang J-Y. Comparison of cytocompatibility of zein film with other biomaterials and its degradability in vitro. Biopolymers. 2005;78:268–74.

    Article  PubMed  CAS  Google Scholar 

  18. Dong J, Sun Q, Wang J-Y. Basic study of corn protein, zein, as a biomaterial in tissue engineering, surface morphology and biocompatibility. Biomaterials. 2004;25:4691–7.

    Article  PubMed  CAS  Google Scholar 

  19. Salerno A, Oliviero M, Di Maio E, Netti PA, Rofani C, Colosimo A, et al. Design of novel three-phase PCL/TZ-HA biomaterials for use in bone regeneration applications. J Mater Sci Mater Med. 2010;21:2569–81.

    Article  PubMed  CAS  Google Scholar 

  20. Tu J, Wang H, Li H, Dai K, Wang J, Zhang X. The in vivo bone formation by mesenchymal stem cells in zein scaffolds. Biomaterials. 2009;30:4369–76.

    Article  PubMed  CAS  Google Scholar 

  21. Qu Z-H, Wang H-J, Tang T-T, Zhang X-L, Wang J-Y, Dai K-R. Evaluation of the zein/inorganics composite on biocompatibility and osteoblastic differentiation. Acta Biomater. 2008;4:1360–8.

    Article  PubMed  CAS  Google Scholar 

  22. Wang H-J, Gong S-J, Lin Z-X, Fu J-X, Xue S-T, Huang J-C, et al. In vivo biocompatibility and mechanical properties of porous zein scaffolds. Biomaterials. 2007;28:3952–64.

    Article  PubMed  CAS  Google Scholar 

  23. Miyoshi T, Toyohara K, Minematsu H. Preparation of ultrafine fibrous zein membranes via electrospinning. Polym Int. 2005;54:1187–90.

    Article  CAS  Google Scholar 

  24. Lin L, Perets A, Har-El YE, Varma D, Li M, Lazarovici P, Woerdeman DL, Lelkes PI. Alimentary “green” proteins as electrospun scaffolds for skin regenerative engineering. J Tissue Eng Regen Med. 2012. doi:10.1002/term.1493.

  25. Lin J, Li C, Zhao Y, Hu J, Zhang L-M. Co-electrospun nanofibrous membranes of collagen and zein for wound healing. ACS Appl Mater Interfaces. 2012;4:1050–7.

    Article  PubMed  CAS  Google Scholar 

  26. Liu X, Sun Q, Wang H, Zhang L, Wang J-Y. Microspheres of corn protein, zein, for an ivermectin drug delivery system. Biomaterials. 2005;26:109–15.

    Article  PubMed  Google Scholar 

  27. Mehta SK, Kaur G, Verma A. Fabrication of plant protein microspheres for encapsulation, stabilization and in vitro release of multiple anti-tuberculosis drugs. Colloids Surf A Physicochem Eng Asp. 2011;375:219–30.

    Article  CAS  Google Scholar 

  28. de Sousa FO, Blanco-Méndez J, Pérez-Estévez A, Seoane-Prado R, Luzardo-Álvarez A. Effect of zein on biodegradable inserts for the delivery of tetracycline within periodontal pockets. J Biomater Appl. 2012;27:187–200.

    Article  PubMed  Google Scholar 

  29. Karthikeyan K, Lakra R, Rajaram R, Korrapati PS. Development and characterization of zein-based micro carrier system for sustained delivery of aceclofenac sodium. AAPS PharmSciTech. 2011;13:143–9.

    Article  PubMed  Google Scholar 

  30. Karthikeyan K, Guhathakarta S, Rajaram R, Korrapati PS. Electrospun zein/eudragit nanofibers based dual drug delivery system for the simultaneous delivery of aceclofenac and pantoprazole. Int J Pharm. 2012;438:117–22.

    Article  PubMed  CAS  Google Scholar 

  31. Huang W, Zou T, Li S, Jing J, Xia X, Liu X. Drug-loaded zein nanofibers prepared using a modified coaxial electrospinning process. AAPS PharmSciTech. 2013;14:675–81.

    Article  PubMed  CAS  Google Scholar 

  32. Fernandez A, Torres-Giner S, Lagaron JM. Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocoll. 2009;23:1427–32.

    Article  CAS  Google Scholar 

  33. Yang J-M, Zha L-S, Yu D-G, Liu J. Coaxial electrospinning with acetic acid for preparing ferulic acid/zein composite fibers with improved drug release profiles. Colloids Surf B Biointerfaces. 2013;102:737–43.

    Article  PubMed  CAS  Google Scholar 

  34. Torres-Giner S, Ocio MJ, Lagaron JM. Novel antimicrobial ultrathin structures of zein/chitosan blends obtained by electrospinning. Carbohyd Polym. 2009;77:261–6.

    Article  CAS  Google Scholar 

  35. Jiang Q, Yang Y. Water-stable electrospun zein fibers for potential drug delivery. J Biomater Sci Polym Ed. 2011;22:1393–408.

    Article  CAS  Google Scholar 

  36. Jiang Y-N, Mo H-Y, Yu D-G. Electrospun drug-loaded core–sheath PVP/zein nanofibers for biphasic drug release. Int J Pharm. 2012;438:232–9.

    Article  PubMed  CAS  Google Scholar 

  37. Holden MTG, Feil EJ, Lindsay JA, Peacock SJ, Day NPJ, Enright MC, et al. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S A. 2004;101:9786–91.

    Article  PubMed  CAS  Google Scholar 

  38. Boyle VJ, Fancher ME, Ross RW. Rapid, modified Kirby–Bauer susceptibility test with single, high-concentration antimicrobial disks. Antimicrob Agents Chemother. 1973;3:418–24.

    Article  PubMed  CAS  Google Scholar 

  39. Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI. Electrospun protein fibers as matrices for tissue engineering. Biomaterials. 2005;26:5999–6008.

    Article  PubMed  CAS  Google Scholar 

  40. Teo WE, He W, Ramakrishna S. Electrospun scaffold tailored for tissue-specific extracellular matrix. Biotechnol J. 2006;1:918–29.

    Article  PubMed  CAS  Google Scholar 

  41. Xu W, Karst D, Yang W, Yang Y. Novel zein-based electrospun fibers with the water stability and strength necessary for various applications. Polym Int. 2008;57:1110–7.

    Article  CAS  Google Scholar 

  42. Li Y, Lim LT, Kakuda Y. Electrospun zein fibers as carriers to stabilize (−)-epigallocatechin gallate. J Food Sci. 2009;74:C233–40.

    Article  PubMed  CAS  Google Scholar 

  43. Jiang Q, Reddy N, Yang Y. Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds. Acta Biomater. 2010;6:4042–51.

    Article  PubMed  CAS  Google Scholar 

  44. Reddy N, Yang Y. Potential of plant proteins for medical applications. Trends Biotechnol. 2011;29:490–8.

    Article  PubMed  CAS  Google Scholar 

  45. Sung HW, Huang RN, Huang L, Tsai CC, Chiu CT. Feasibility study of a natural crosslinking reagent for biological tissue fixation. J Biomed Mater Res. 1998;42:560–7.

    Article  PubMed  CAS  Google Scholar 

  46. Zhong S, Teo WE, Zhu X, Beuerman R, Ramakrishna S, Yung LYL. Formation of collagen–glycosaminoglycan blended nanofibrous scaffolds and their biological properties. Biomacromolecules. 2005;6:2998–3004.

    Article  PubMed  CAS  Google Scholar 

  47. Lee J, Edwards H, Pereira C, Samii S. Crosslinking of tissue-derived biomaterials in 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). J Mater Sci Mater Med. 1996;7:531–41.

    Article  CAS  Google Scholar 

  48. Qiu W, Cappello J, Wu X. Autoclaving as a chemical-free process to stabilize recombinant silk-elastinlike protein polymer nanofibers. Appl Phys Lett. 2011;98:263702–23.

    Article  PubMed  Google Scholar 

  49. Yao C, Li X, Song T. Electrospinning and crosslinking of zein nanofiber mats. J Appl Polym Sci. 2006;103:380–5.

    Article  Google Scholar 

  50. He W, Yong T, Teo WE, Ma Z, Ramakrishna S. Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: potential vascular graft for blood vessel tissue engineering. Tissue Eng. 2005;11:1574–88.

    Article  PubMed  CAS  Google Scholar 

  51. Dash TK, Konkimalla VB. Poly-ε-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release. 2012;158:15–33.

    Article  PubMed  CAS  Google Scholar 

  52. Collins G, Federici J, Imura Y, Catalani LH. Charge generation, charge transport, and residual charge in the electrospinning of polymers: a review of issues and complications. J Appl Phys. 2012;111:044701.

    Article  Google Scholar 

  53. Torres-Giner S, Gimenez E, Lagaron JM. Characterization of the morphology and thermal properties of zein prolamine nanostructures obtained by electrospinning. Food Hydrocoll. 2008;22:601–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Damascus University for a fully funded scholarship (to NA). We thank Ursula Potter (SEM), John Mitchels (Raman microscopy) and Jo Carter (Microbiology), all at the University of Bath, for their skilled support.

Conflict of interest

All three authors Nour Alhusein, Ian S. Blagbrough and Paul A. De Bank declare that they have no conflict of interest. There were no experiments on human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. De Bank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alhusein, N., Blagbrough, I.S. & De Bank, P.A. Zein/polycaprolactone electrospun matrices for localised controlled delivery of tetracycline. Drug Deliv. and Transl. Res. 3, 542–550 (2013). https://doi.org/10.1007/s13346-013-0179-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-013-0179-2

Keywords

Navigation