Skip to main content

Advertisement

Log in

Intravitreal poly(l-lactide) microparticles sustain retinal and choroidal delivery of TG-0054, a hydrophilic drug intended for neovascular diseases

  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

While poorly soluble drugs such as corticosteroids sustain drug delivery in the vitreous humor by virtue of slow dissolution, macromolecules such as antibodies and their fragments sustain their levels due to their slow clearance. However, currently there are no approaches to sustain the delivery of well water-soluble small molecule drugs in the vitreous. In this study, we optimized a poly(l-lactide) (PLA) microparticle formulation for sustained intravitreal delivery of TG-0054, a well water-soluble anti-angiogenic drug that is of potential value in treating choroid neovascularization. After determining the influence of process parameters on particle size and drug loading, spherical microparticles syringeable through a 27-G needle, with a mean diameter of 7.6 μm, 10% (w/w) TG-0054 loading, sustained in vitro drug release for at least 6 months, and low residual organic solvent content (~ 1 ppb/mg) were prepared. Microparticles as well as drug solution were assessed for their in vivo drug delivery over 3 months following intravitreal injection in New Zealand white rabbits. Drug levels in the microparticle dosed eyes at 3 months were 43.7 ± 16.2, 243 ± 42.6, and 62.8 ± 22.6 μg/g vitreous, retina, and choroid–retinal pigment epithelium (RPE), respectively, and similar to levels at 1 month. Intravitreal injection of plain drug solution resulted in significantly lower amounts of drug in the dosed eye, with the levels being 0.8 ± 0.5, 2.7 ± 2.8, and 4.9 ± 4.2 μg/g in vitreous, retina, and choroid–RPE, respectively, at 1 month, with no detectable drug at 3 months. Although surface degradation was evident, microparticles maintained their spherical structure during the 6-month in vitro study and the 3-month in vivo study, with the vitreal particle retention at 1 and 3 months being 60% and 27%, respectively. Thus, PLA microparticles capable of sustaining retinal and choroidal delivery of TG-0054 for 3 to 6 months were developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allison SD. Analysis of initial burst in PLGA microparticles. Expert Opin Drug Deliv. 2008;5:615–28.

    Article  CAS  PubMed  Google Scholar 

  • Amrite AC, Ayalasomayajula SP, Cheruvu NP, Kompella UB. Single periocular injection of celecoxib–PLGA microparticles inhibits diabetes-induced elevations in retinal PGE2, VEGF, and vascular leakage. Invest Ophthalmol Vis Sci. 2006;47:1149–60.

    Article  PubMed  Google Scholar 

  • Audren F, Tod M, Massin P, Benosman R, Haouchine B, Erginay A, et al. Pharmacokinetic–pharmacodynamic modeling of the effect of triamcinolone acetonide on central macular thickness in patients with diabetic macular edema. Invest Ophthalmol Vis Sci. 2004;45:3435–41.

    Article  PubMed  Google Scholar 

  • Ayalasomayajula SP, Kompella UB. Subconjunctivally administered celecoxib–PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced oxidative stress in a rat model. Eur J Pharmacol. 2005;511:191–8.

    Article  CAS  PubMed  Google Scholar 

  • Bakri SJ, Snyder MR, Reid JM, Pulido JS, Ezzat MK, Singh RJ. Pharmacokinetics of intravitreal ranibizumab (Lucentis). Ophthalmology. 2007;114:2179–82.

    Article  PubMed  Google Scholar 

  • Deng JS, Li L, Tian Y, Ginsburg E, Widman M, Myers A. In vitro characterization of polyorthoester microparticles containing bupivacaine. Pharm Dev Technol. 2003;8:31–8.

    Article  CAS  PubMed  Google Scholar 

  • Durairaj C, Shah JC, Senapati S, Kompella UB. Prediction of vitreal half-life based on drug physicochemical properties: quantitative structure–pharmacokinetic relationships (QSPKR). Pharm Res. 2009a;26:1236–60.

    Article  CAS  PubMed  Google Scholar 

  • Durairaj C, Kim SJ, Edelhauser HF, Shah JC, Kompella UB. Influence of dosage form on the intravitreal pharmacokinetics of diclofenac. Invest Ophthalmol Vis Sci. 2009b;50:4887–97.

    Article  PubMed  Google Scholar 

  • Herrero-Vanrell R, Refojo MF. Biodegradable microspheres for vitreoretinal drug delivery. Adv Drug Deliv Rev. 2001;52:5–16.

    Article  CAS  PubMed  Google Scholar 

  • Iconomopoulou SM, Kallitsis JK, Voyiatzis GA. Incorporation of small molecular weight active agents into polymeric components. Recent Pat Drug Deliv Formul. 2008;2:94–107.

    Article  CAS  PubMed  Google Scholar 

  • Kimura H, Ogura Y. Biodegradable polymers for ocular drug delivery. Ophthalmologica. 2001;215:143–55.

    Article  CAS  PubMed  Google Scholar 

  • Kompella UB, Kadam RS, Lee VHL. Recent advances in ophthalmic drug delivery. Therapeutic Delivery. 2010;1:435–56.

    Article  CAS  Google Scholar 

  • Liang Z, Brooks J, Willard M, Liang K, Yoon Y, Kang S, et al. CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway. Biochem Biophys Res Commun. 2007;359:716–22.

    Article  CAS  PubMed  Google Scholar 

  • Martin TM, Bandi N, Shulz R, Roberts CB, Kompella UB. Preparation of budesonide and budesonide-PLA microparticles using supercritical fluid precipitation technology. AAPS PharmSciTech. 2002;3:E18.

    Article  PubMed  Google Scholar 

  • Moritera T, Ogura Y, Honda Y, Wada R, Hyon SH, Ikada Y. Microspheres of biodegradable polymers as a drug-delivery system in the vitreous. Invest Ophthalmol Vis Sci. 1991;32:1785–90.

    CAS  PubMed  Google Scholar 

  • Okadaand H. Biodegradable microspheres in drug delivery. Crit Rev Ther Drug Carrier Syst. 1995;12:1–99.

    Google Scholar 

  • Puthli S, Vavia PR. Stability studies of microparticulate system with piroxicam as model drug. AAPS PharmSciTech. 2009;10:872–80.

    Article  CAS  PubMed  Google Scholar 

  • Kadam RS, Kompella UB. Influence of lipophilicity on drug partitioning into sclera, choroid–retinal pigment epithelium, retina, trabecular meshwork, and optic nerve. J Pharmacol Exp Ther. 2010;332:1107–20.

    Article  CAS  PubMed  Google Scholar 

  • Rafat M, Cleroux CA, Fong WG, Baker AN, Leonard BC, O'Connor MD, et al. PEG–PLA microparticles for encapsulation and delivery of Tat-EGFP to retinal cells. Biomaterials. 2010;31:3414–21.

    Article  CAS  PubMed  Google Scholar 

  • Roscoe R, Buurman P, Velthorst EJ. Dispersion of soil aggregates by varied amount of ultrasonic energy in fractionation of organic matter of clay Latosol: carbon, nitrogen and δ13C distribution in particle size fractions. Eur J Soil Sci. 2000;51:445–54.

    Article  Google Scholar 

  • Sampat KM, Garg SJ. Complications of intravitreal injections. Curr Opin Ophthalmol. 2010;21:178–83.

    Article  PubMed  Google Scholar 

  • Sapieha P, Hamel D, Shao Z, Rivera JC, Zaniolo K, Joyal JS, et al. Proliferative retinopathies: angiogenesis that blinds. Int J Biochem Cell Biol. 2010;42:5–12.

    Article  CAS  PubMed  Google Scholar 

  • Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28:5–24.

    Article  PubMed  Google Scholar 

  • Tolentino MJ. Current molecular understanding and future treatment strategies for pathologic ocular neovascularization. Curr Mol Med. 2009;9:973–81.

    Article  CAS  PubMed  Google Scholar 

  • Varde NK, Pack DW. Microspheres for controlled release drug delivery. Expert Opin Biol Ther. 2004;4:35–51.

    Article  CAS  PubMed  Google Scholar 

  • Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm. 2008;364:298–327.

    Article  CAS  PubMed  Google Scholar 

  • Yeh MK, Chen JL, Chiang CH. In vivo and in vitro characteristics for insulin-loaded PLA microparticles prepared by w/o/w solvent evaporation method with electrolytes in the continuous phase. J Microencapsul. 2004;21:719–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a research grant from TaiGen Biotechnology, Co. Ltd. and in part by the NIH grant EY018940. We are thankful to Dr. Ram B. Gupta of Auburn University for his valuable input during the preparation of this manuscript.

Conflicts of interest

U. B. Kompella declared to have received financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday B. Kompella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shelke, N.B., Kadam, R., Tyagi, P. et al. Intravitreal poly(l-lactide) microparticles sustain retinal and choroidal delivery of TG-0054, a hydrophilic drug intended for neovascular diseases. Drug Deliv. and Transl. Res. 1, 76–90 (2011). https://doi.org/10.1007/s13346-010-0009-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-010-0009-8

Keywords

Navigation