Skip to main content
Log in

Numerical Analysis of the Behavior of A New Aeronautical Alloy (Ti555-03) Under the Effect of A High-Speed Water Jet

  • Published:
China Ocean Engineering Aims and scope Submit manuscript

Abstract

In this paper, we present a numerical simulation of a water jet impacting a new aeronautical material Ti555-03 plate. The Computational Fluid Dynamics (CFD) behavior of the jet is investigated using a FV (Finite Volume) method. The Fluid–Structure Interaction (FSI) is studied using a coupled SPH (Smoothed Particle Hydrodynamics)-FE (Finite Element) method. The jets hit the metal sheet with an initial velocity 500 m/s. Two configurations which differ from each other by the position (angle of inclination) of the plate relatively to the axis of revolution of the jet inlet are investigated in this study. The objective of this study is to predict the impact of the fluid produced at high pressure and high speed especially at the first moment of impact. Numerical simulations are carried out under ABAQUS. We have shown in this study that the inclination of the titanium alloy plate by 45° stimulates the phenomenon of recirculation of water. This affects the velocity profile, turbulence and boundary layers in the impact zone. The stagnation zone and the phenomenon of water recirculation are strongly influenced by the slope of the plate which gives a pressure gradient and displacement very important between the two configurations. Fluctuations of physical variables (displacement and pressure) prove the need for a noise and vibratory study. These predictions will subsequently be used for the modeling of the problem of an orthogonal cut in a high-speed machining process assisted by high-pressure water jet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayed Y., Germain G., Ammar A. and Furet B., 2013. Degradation modes and tool wear mechanisms in finish and rough machining of Ti17 titanium alloy under high-pressure water jet assistance, Wear, 305(1–2), 228–237.

    Article  Google Scholar 

  • Ayed Y., Robert C., Germain G. and Ammar A., 2016. Development of a numerical model for the understanding of the chip formation in high-pressure water-jet assisted machining, Finite Elements in Analysis and Design, 108, 1–8.

    Article  Google Scholar 

  • Behera C.B., Dutta P. and Srinivasan K., 2007. Numerical study of interrupted impinging jets for cooling of electronics, IEEE Transactions on Components and Packaging Technologies, 30(2), 275–284.

    Article  Google Scholar 

  • Braham Bouchnak T., 2010. Etude du Comportement en Sollicitations extrEmes et de L’usinabilité D’un Nouvel Alliage de Titane Aéronautique: le Ti555–3, Ph. D. Thesis, Arts et Métiers Paris Tech, Paris. (in French)

    Google Scholar 

  • Braham-Bouchnak T., Germain G., Robert P. and Lebrun J.L., 2010. High pressure water jet assisted machining of duplex steel: Machinability and tool life, International Journal of Material Forming, 3(S1), 507–510.

    Article  Google Scholar 

  • Chizari M., Al-Hassani S.T.S. and Barrett L.M., 2008. Experimental and numerical study of water jet spot welding, Journal of Materials Processing Technology, 198(1–3), 213–219.

    Article  Google Scholar 

  • Chizari M., Barrett L.M. and Al-Hassani S.T.S., 2009. An explicit numerical modelling of the water jet tube forming, Computational Materials Science, 45(2), 378–384.

    Article  Google Scholar 

  • Comte Bellot G. and Bailly C., 2003. Turbulence, CNRS Edition Par-is, Collection Sciences et Techniques de l’ingénieur. (in French)

    Google Scholar 

  • Gojon R., 2015. Etude de Jets Supersoniques Impactant Une Paroi Par Simulation Numérique: Analyse Aérodynamique et Acoustique Des Mécanismes De Rétroaction, Ph.D. Thesis, Ecole Centrale De Lyon, De Lyon. (in French)

    Google Scholar 

  • Guha A., Barron R.M. and Balachandar R., 2011. An experimental and numerical study of water jet cleaning process, Journal of Materials Processing Technology, 211(4), 610–618.

    Article  Google Scholar 

  • Hsu. C.Y., Liang. C.C., Teng T.L. and Nguyen A.T., 2013. A numerical study on high-speed water jet impact, Ocean Engineering, 72, 98–106.

    Article  Google Scholar 

  • Kaushik M., Kumar S. and Humrutha G., 2015. Review of computational fluid dynamics studies on jets, American Journal of Fluid Dynamics, 5(A), 1–11.

    Google Scholar 

  • Khan F., Milanovic I. and Hammad K., 2011. CFD modeling of submerged impinging jets with various separation distances, Proceedings of the 2011 ASEE Northeast Section Annual Conference, American Society for Engineering Education, Washington, DC.

    Google Scholar 

  • Liu M.B. and Liu G.R., 2010. Smoothed particle hydrodynamics (SPH): An overview and recent developments, Archives of Computational Methods in Engineering, 17(1), 25–76.

    Article  MathSciNet  MATH  Google Scholar 

  • Lush P.A., 1991. Comparison between analytical and numerical calculations of liquid impact on elastic-plastic solid, Journal of the Mechanics and Physics of Solids, 39(1), 145–155.

    Article  Google Scholar 

  • Mabrouki T., Raissi K. and Cornier A., 2000. Numerical simulation and experimental study of the interaction between a pure high-velocity waterjet and targets: Contribution to investigate the decoating process, Wear, 239(2), 260–273.

    Article  Google Scholar 

  • Mabrouki T. and Raissi K., 2002. Stripping process modelling: Interaction between a moving waterjet and coated target, International Journal of Machine Tools and Manufacture, 42(11), 1247–1258.

    Article  Google Scholar 

  • Mahjoub Saïd N., 2002. étude De La Diffusion D’Un Panaché Issu D’une Cheminée: Application A La Maitrise De La Dispersion D’un Polluant, Ph.D. Thesis, Ecole Nationale d’Ingénieurs de Monastir, Monastir. (in French)

    Google Scholar 

  • Rivière N., 2008. Etude Expérimentale D’une Injection Turbulente: Application Au Jet Impactant Une Surface Libre, Ph.D. Thesis, Université De Bordeaux 1, Bordeaux. (in French)

    Google Scholar 

  • Roux S., 2011. Contribution Expérimentale A L’Aérothermique D’un Jet En Impact Forcé Acoustiquement, Ph.D. Thesis, Universit'e de Poitiers, Poitiers. (in French)

    Google Scholar 

  • Roux S., Brizzi L.E. and Dorignacb E., 2009. Dynamique d’un jet rond impactant une paroi plane contraint par un forçage acoustique, 19éme Congrés Français de Mécanique, Marseille, 24–28. (in French)

    Google Scholar 

  • Saxena A. and Paul S., 2007. Numerical modelling of kerf geometry in abrasive water jet machining, International Journal of Abrasive Technology, 1(2), 208–230.

    Article  Google Scholar 

  • Sodjavi K., 2013. Etude Expérimentale de la Turbulence Dans Une Couche de Mélange Anisotherme, Ph.D. Thesis, Université Rennes, Rennes. (in French)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ben Belgacem.

Additional information

Foundation item: This work was financially supported by the University of Monastir (Tunisia).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Belgacem, I., Cheikh, L., Barhoumi, E.M. et al. Numerical Analysis of the Behavior of A New Aeronautical Alloy (Ti555-03) Under the Effect of A High-Speed Water Jet. China Ocean Eng 33, 114–126 (2019). https://doi.org/10.1007/s13344-019-0012-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13344-019-0012-x

Key words

Navigation