Skip to main content
Log in

An artificial neural network-based response surface method for reliability analyses of c-φ slopes with spatially variable soil

  • Published:
China Ocean Engineering Aims and scope Submit manuscript

Abstract

This paper presents an artificial neural network (ANN)-based response surface method that can be used to predict the failure probability of c-φ slopes with spatially variable soil. In this method, the Latin hypercube sampling technique is adopted to generate input datasets for establishing an ANN model; the random finite element method is then utilized to calculate the corresponding output datasets considering the spatial variability of soil properties; and finally, an ANN model is trained to construct the response surface of failure probability and obtain an approximate function that incorporates the relevant variables. The results of the illustrated example indicate that the proposed method provides credible and accurate estimations of failure probability. As a result, the obtained approximate function can be used as an alternative to the specific analysis process in c-φ slope reliability analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cheng, J., Li, Q. S. and Xiao, R. C., 2008. A new artificial neural network-based response surface method for structural reliability analysis, Probabilist. Eng. Mech., 23(1): 51–63.

    Article  Google Scholar 

  • Cho, S. E., 2007. Effects of spatial variability of soil properties on slope stability, Eng. Geol., 92(3-4): 97–109.

    Article  Google Scholar 

  • Cho, S. E., 2009. Probabilistic assessment of slope stability that considers the spatial variability of soil properties, J. Geotech. Geoenviron. Eng., 136(7): 975–984.

    Article  Google Scholar 

  • Chok, Y. H., 2009. Modelling the Effects of Soil Variability and Vegetation on the Stability of Natural Slopes, Ph. D. Thesis, University of Adelaide.

    Google Scholar 

  • EI-Ramly, H., Morgenstern, N. R. and Cruden, D. M., 2002. Probabilistic slope stability analysis for practice, Can. Geotech. J., 39(3): 665–683.

    Article  Google Scholar 

  • Fenton, G. A. and Vanmarcke, E. H., 1990. Simulation of random fields via local average subdivision, J. Eng. Mech., ASCE, 116(8): 1733–1749.

    Article  Google Scholar 

  • Griffiths, D. V. and Fenton, G. A., 2004. Probabilistic slope stability by finite elements, J. Geotech. Geoenviron. Eng., 130(5): 507–518.

    Article  Google Scholar 

  • Griffiths, D. V. and Fenton, G. A., 2007. The random finite element method (RFEM) in slope stability analysis, Probabilistic Methods in Geotechnical Engineering, Springer Vienna, 317–346.

    Chapter  Google Scholar 

  • Griffiths, D. V., Huang, J. and Fenton, G. A., 2010. Probabilistic infinite slope analysis, Comput. Geotech., 38(4): 577–584.

    Article  Google Scholar 

  • Haldar, S. and Basu, D., 2013. Response of Euler-Bernouli beam on spatially random elastic soil, Comput. Geotech., 50, 110–128.

    Article  Google Scholar 

  • Hicks, M. A. and Onisiphorou, C., 2005. Stochastic evaluation of static liquefaction in a predominantly dilative sand fill, Geotechnique, 55, 123–133.

    Article  Google Scholar 

  • Hicks, M. A. and Samy, K., 2002. Influence of heterogeneity on undrained clay slope stability, Quart. J. Eng. Geol. Hydrogeol., 35, 41–49.

    Article  Google Scholar 

  • Ji, J., Liao, H. J. and Low, B. K., 2012. Modeling 2-D spatial variation in slope reliability analysis using interpolated autocorrelations, Comput. Geotech., 40, 135–146.

    Article  Google Scholar 

  • Khajehzadeh, M., Taha, M. R. and Eslami, M., 2014. Opposition-based firefly algorithm for earth slope stability evaluation, China Ocean Eng., 28(5): 713–725.

    Article  Google Scholar 

  • Li, K. S. and Lumb, P., 1987. Probabilistic design of slopes, Can. Geotech. J., 24(4): 520–535.

    Article  Google Scholar 

  • Li, L. and Chu, X. S., 2011. An improved particle swarm optimization algorithm with harmony strategy for the location of critical slip surface of slopes, China Ocean Eng., 25(2): 357–364.

    Article  Google Scholar 

  • Li, L., Cheng, Y. M. and Chu, X. S., 2013a. A new approach to the determination of the critical slip surfaces of slopes, China Ocean Eng., 27(1): 51–64.

    Article  Google Scholar 

  • Li, L., Wang, Y., Cao, Z. J. and Chu, X. S., 2013b. Risk de-aggregation and system reliability analysis of slope stability using representative slip surfaces, Comput. Geotech., 53, 95–105.

    Article  Google Scholar 

  • Luo, X. F., Li, X., Zhou, J. and Cheng, T., 2012. A kriging-based hybrid optimization algorithm for slope reliability analysis, Struct. Saf., 34(1): 401–406.

    Article  Google Scholar 

  • Luo, Z., Atamturktur, S., Juang, C. H., Huang, H. W. and Lin, P. S., 2011. Probability of serviceability failure in a braced excavation in a spatially random filed: Fuzzy finite element approach, Comput. Geotech., 38(8): 1031–1040.

    Article  Google Scholar 

  • McKay, M. D., Beckman, R. J. and Conover, W. J., 1979. Comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21(2): 239–245.

    MATH  MathSciNet  Google Scholar 

  • Phoon, K. K. and Kulhawy, F. H., 1999. Characterization of geotechnical variability, Can. Geotech. J., 36, 612–624.

    Article  Google Scholar 

  • Srivastava, A. and Babu, G. L., 2009. Effect of soil variability on the bearing capacity of clay and in slope stability problems, Eng. Geol., 108(1): 142–152.

    Article  Google Scholar 

  • Vanmarcke, E. H., 1983. Random Fields: Analysis and Synthesis, Cambridge, MIT Press.

    MATH  Google Scholar 

  • Wang, Y., Cao, Z. J. and Au, S. K., 2010. Efficient Monte Carlo simulation of parameter sensitivity in probabilistic slope stability analysis, Comput. Geotech., 37(7): 1015–1022.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-xun Shu  (舒苏荀).

Additional information

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51278217).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, Sx., Gong, Wh. An artificial neural network-based response surface method for reliability analyses of c-φ slopes with spatially variable soil. China Ocean Eng 30, 113–122 (2016). https://doi.org/10.1007/s13344-016-0006-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13344-016-0006-x

Key words

Navigation