Skip to main content
Log in

Simulation of vortex-induced vibrations of a cylinder using ANSYS CFX

  • Published:
China Ocean Engineering Aims and scope Submit manuscript

Abstract

In this paper, vortex-induced vibrations of a cylinder are simulated by use of ANSYS CFX simulation code. The cylinder is treated as a rigid body and transverse displacements are obtained by use of a one degree of freedom spring damper system. 2-D as well as 3-D analysis is performed using air as the fluid. Reynolds number is varied from 40 to 16000 approx., covering the laminar and turbulent regimes of flow. The experimental results of (Khalak and Williamson, 1997) and other researchers are used for validation purposes. The results obtained are comparable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhmetov, D. G., 2009. Vortex Rings, Springer-Verlag Berlin Heidelberg. ANSYS, 2012. ANSYS CFX Documentation, ANSYS Incorporated.

    Book  Google Scholar 

  • Bearman, P. W., 2000. Developments in vortex shedding research, Workshop on Vortex-Induced Vbrations of OffShore Structures, Sao Paulo, Brazil.

    Google Scholar 

  • Brika, D. and Laneville, A., 1993. Vortex-induced vibrations of a long flexible circular cylinder, J. Fluid Mech., 250, 481–508. doi:10.1017/S0022112093001533.

    Article  Google Scholar 

  • Green, S. I., 1995. Fluid Vortices: Fluid Mechanics and Its Applications, Kluwer Academic Print on Demand.

    Book  MATH  Google Scholar 

  • Guilmineau, E. and Queutey, P., 2004. Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow, J. Fluid. Struct., 19(4): 449–466. doi:10.1016/j.jfluidstructs.2004.02.004.

    Article  Google Scholar 

  • Hover, F. S., Techet, A. H. and Triantafyllou, M. S., 1998. Forces on oscillating uniform and tapered cylinders in cross flow, J. Fluid Mech., 363, 97–114. doi:10.1017/S0022112098001074.

    Article  MATH  MathSciNet  Google Scholar 

  • Irvine, T., 2012. Bending Frequencies of Beams, Rods, and Pipes, http://www.vibrationdata.com/tutorials2/beam.pdf.

    Google Scholar 

  • Iwan, W. D. and Blevins, R. D., 1974. A model for vortex-induced oscillation of structures, J. Appl. Mech., ASME, 41(3): 581–586.

    Article  Google Scholar 

  • Khalak, A. and Williamson, C. H. K., 1997. Investigation of relative effects of mass and damping in vortexinduced vibration of a circular cylinder, Journal of Wind Engineering and Industrial Aerodynamics, 69–71, 341–350. doi: 10.1016/S0167-6105(97)00167-0.

    Article  Google Scholar 

  • Kuehlert, K., Webb, S., Schowalter, D., Holmes, W., Chilka, A. and Reuss, S., 2008. Simulation of the fluid-structure-interaction of steam generator tubes and bluff bodies, Proc. 14th International Conference on Energy, 238(8): 2048–2054. doi:10.1016/j.nucengdes.2007.11.017.

    Google Scholar 

  • Li, T., Zhang, J. Y. and Zhang, W. H., 2011. Nonlinear characteristics of vortex-induced vibration at low Reynolds number, Communications in Nonlinear Science and Numerical Simulation, 16(7): 2753–2771.

    Article  MATH  MathSciNet  Google Scholar 

  • Meneghini, J. R., Sahara, F. and Bearman, P. W., 1997. Numerical simulation of vortex shedding from an oscillating circular cylinder, Computational Methods and Experimental Measurements, Computational Mechanics Publications, 409–418. doi:10.2495/CMEM970401.

    Google Scholar 

  • Norberg, C., 2003. Fluctuating lift on a circular cylinder: Review and new measurements, J. Fluids Struct., 17(1): 57–96. doi:10.1016/S0889-9746(02)00099-3.

    Article  MathSciNet  Google Scholar 

  • Parra, P. H. C. C., 1996. Semi Empirical Model for Vortex-Induced Vibrations: Theoretical and Experimental Analysis, Msc. Thesis, Sao Paulo, Brazil.

    Google Scholar 

  • Roe, P. L., 1984. Generalized Formulation of TVD Lax-Wendroff Scheme, ICASE Report.

    Google Scholar 

  • Sarpkaya, T., 1979. Vortex-induced oscillations: A selective review, J. Appl. Mech., 46(2): 241–258.

    Article  Google Scholar 

  • Sphaier, S. H. and Rengel, J. E., 1999. A projection method for unsteady Navier Stokes equation with volume method and collocated grid, Hybrid Methods in Heat and Mass Transfer 1, No. 4.

    Google Scholar 

  • Sweby, P. K., 1984. High resolution scheme using flux limter for hyperbolic conservation laws, SIAM Journal on Numerical Analysis, 21(5): 995–1011.

    Article  MATH  MathSciNet  Google Scholar 

  • Wanderley, J. B. and Levi, C., 2005. Vortex induced loads on marine risers, Ocean Eng., 32(11–12): 1281–1295. doi:10.1016/j.oceaneng.2004.12.007

    Article  Google Scholar 

  • Wanderley, J. B. V., Souza, G. H. B., Sphaier, S. H. and Levi, C., 2008. Vortex-induced vibration of an elastically mounted circular cylinder using an upwind TVD two-dimensional numerical scheme, Ocean Eng., 35(14–15): 1533–1544. doi:10.1016/j.oceaneng.2008.06.007.

    Article  Google Scholar 

  • Williamson, C. H. K. and Roshko, A., 1979. Vortex formation in the wake of an oscillating cylider, J. Fluid. Struct., 2(4): 355–381.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abu Bakar Izhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izhar, A.B., Qureshi, A.H. & Khushnood, S. Simulation of vortex-induced vibrations of a cylinder using ANSYS CFX. China Ocean Eng 28, 541–556 (2014). https://doi.org/10.1007/s13344-014-0044-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13344-014-0044-1

Key words

Navigation