Skip to main content
Log in

Effect of under connected plates on the hydrodynamic efficiency of the floating breakwater

  • Published:
China Ocean Engineering Aims and scope Submit manuscript

Abstract

In this paper, the hydrodynamic efficiency of a floating breakwater system is experimentally studied by use of physical models. Regular waves with wide ranges of wave heights and periods are tested. The efficiency of the breakwater is presented as a function of the wave transmission, reflection, and energy dissipation coefficients. Different parameters affecting the breakwater efficiency are investigated, e.g. the number of the under connected vertical plates, the length of the mooring wire, and the wave length. It is found that, the transmission coefficient k t decreases with the increase of the relative breakwater width B/L, the number of plates n and the relative wire length l/h, while the reflection coefficient k r takes the opposite trend. Therefore, it is possible to achieve k t values smaller than 0.25 and k r values larger than 0.80 when B/L is larger than 0.25 for the case of l/h=1.5 and n=4. In addition, empirical equations used for estimating the transmission and reflection coefficients are developed by using the dimensionless analysis, regression analysis and measured data and verified by different theoretical and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bayram, A., 2000. Experimental study of a sloping float breakwater, Ocean Eng., 27(4): 445–453.

    Article  Google Scholar 

  • Behzad, M. and Akbari, M., 2007. Experimental investigation on response and efficiency of moored pontoon type floating breakwaters, Iranian Journal of Science & Technology, Engineering, 31(1): 95–99.

    Google Scholar 

  • Brebner, A. and Ofuya, A. O., 1968. Floating breakwaters, Proceedings of 11th Conference on Coastal Engineering, London, United Kingdom, 1055–1085.

    Google Scholar 

  • Carr, J. H., 1951. Mobile breakwater, Proceeding of 2nd Conference on Coastal Engineering, Houston, Texas, 281–295.

    Google Scholar 

  • Carver, R. D., 1979. Floating Breakwater Wave-Attenuation Tests for East Bay Marina, Olympia Harbor, Washington: Hydraulic Model Investigation, Technical Report HL79-13, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Mississippi.

    Google Scholar 

  • Carver, R. D. and Davidson, D. D., 1983. Slopping floating breakwater model study, Proceeding of the Specialty Conference on Design Construction, Maintenance and Performance of Coastal Structures 83A, 417–432.

    Google Scholar 

  • Dean, R. and Dalrymple, R. A., 1984. Wave Mechanics for Engineering and Scientists, Prentice Hall, Inc., Englewood, Cliffs, New Jersey.

    Google Scholar 

  • Drimer, N., Agnon, Y. and Stiassnie, M., 1992. A simplified analytical model for a floating breakwater in water of finite depth, Appl. Ocean Res., 14(1): 33–41.

    Article  Google Scholar 

  • Dong, G. H., Zheng, Y. N., Lia, Y. C., Teng, B., Guan, C. T. and Lin, D. F., 2008. Experiments on wave transmission coefficients of floating breakwaters, Ocean Eng., 35(8–9): 931–938.

    Article  Google Scholar 

  • Gesraha, M. R., 1995. Hydrodynamic of Floating Pontoons Under Oblique Waves, MSc. Thesis, Irrigation and Hydraulics Department, Faculty of Engineering, Cairo University, Cairo, Egypt.

    Google Scholar 

  • Gesraha, M. R., 2004. An eigenfunction expansion solution for extremely flexible floating pontoons in oblique waves, Appl. Ocean Res., 26(5): 171–182.

    Article  Google Scholar 

  • Goda, Y. and Suzuki, Y., 1976. Estimation of incident and reflected waves in random wave experiments, Proceedings of 15th Conference on Coastal Engineering, Honolulu, Hawaii, 828–845.

    Google Scholar 

  • Fugazza, M. and Natale, L., 1988. Energy losses and floating breakwater responses, J. Waterw. Port Coast. Ocean Eng., 114(2): 191–205.

    Article  Google Scholar 

  • Harms, V. W., 1979. Design criteria for floating tire breakwater, J. Waterw. Port Coast. Ocean Eng., 106(2): 149–170.

    Google Scholar 

  • Kato, J., Hagino, S., and Uekita, Y., 1966. Damping effect of floating breakwaters, J. Waterw. Harbor Div., 95(3): 1068–1078.

    Google Scholar 

  • Kriezi, E. E., Karambas, T. V., Prinos, P. and Koutitas, C., 2001. Interaction of floating breakwaters with waves in shallow waters, International Conference IAHR, Beijing, China, 69–76.

    Google Scholar 

  • Koraim, A. S., 2005. Suggested Model for the Protection of Shores and Marina, Ph. D. Thesis, Civil Engineering, Zagazig University, Zagazig, Egypt.

    Google Scholar 

  • Koraim, A. S. and Rageh, O. S., 2010. Hydraulic performance of vertical walls with horizontal slots used as breakwater, Coast. Eng., 57(8): 745–756.

    Article  Google Scholar 

  • Koutandos, E. V., Karambas, T. V., Prinos, P. and Koutitas, C., 2004. Floating breakwater response to waves action using a Boussinesq model coupled with a 2DV elliptic solver, J. Waterw. Port Coast. Ocean Eng., 130(5): 243–255.

    Article  Google Scholar 

  • Koutandos, E. V., Prinos, P., and Gironella, X., 2005. Floating breakwaters under regular and irregular wave forcing: reflection and transmission characteristics, J. Hydraul. Res., 43(2): 174–188.

    Article  Google Scholar 

  • Liang, N. K., Huang, J. S., and Li, C. F., 2004. A study of buoy floating breakwater, Ocean Eng., 31(1): 43–60.

    Article  Google Scholar 

  • Lochner, R., Faber, O., and Penny, W. G., 1948. The Bombardon floating breakwater, The Civil Engineer in War 2, Docks and Harbors, The Institution of Civil Engineers, London, England.

    Google Scholar 

  • Macagno, E. O., 1953. Fluid mechanics: experimental study of the effects of the passage of a wave beneath an obstacle, Proceedings of the Academic des Sciences, Paris, France.

    Google Scholar 

  • Mani, J. S., 1991. Design of Y-frame floating breakwater, J. Waterw. Port Coast. Ocean Eng., 117(2): 105–119.

    Article  Google Scholar 

  • McCartney, B. L., 1985. Floating breakwater design, J. Waterw. Port Coast. Ocean Eng., 111(2): 304–318.

    Article  Google Scholar 

  • Murali, K. and Mani, J. S., 1997. Performance of cage floating breakwater, J. Waterw. Port Coast. Ocean Eng., 123(4): 172–179.

    Article  Google Scholar 

  • Rageh, O. S., El-Alfy, K. S., Shamaa, M. T. and Diab, R. M., 2006. An experimental study of spherical floating bodies under waves, Proc. 10th Int. Water Technol. Conf. (IWTC10), Alexandria, Egypt, 357–375.

    Google Scholar 

  • Rageh, O. S., Koraim, A. S. and Salem, T. N., 2009. Hydrodynamic efficiency of partially immersed caissons supported on piles, Ocean Eng., 36(14): 1112–1118.

    Article  Google Scholar 

  • Sutko, A. A. and Haden E. L., 1974. The effect of surge, heave and pitch on the performance of a floating breakwater, Proceedings of the Floating Breakwater Conference, Newport, Rhode Island, 41–53.

    Google Scholar 

  • Tolba, E. R., 1998. Behavior of Floating Breakwater Under Wave Action, Ph.D. Thesis, Suez Canal University, Port Said, Egypt.

    Google Scholar 

  • Williams, K. J., 1988. An experimental study of wave obstacle interaction in a two dimensional domain, J. Hydraul. Res., 26(4): 463–482.

    Article  Google Scholar 

  • Williams, A. N. and McDougal, W. G., 1996. A dynamic submerged breakwater, J. Waterw. Port Coast. Ocean Eng., 122(6): 288–296.

    Article  Google Scholar 

  • Williams, A. N., Lee, H. S., and Huang, Z., 2000. Floating pontoon breakwaters, Ocean Eng., 27(3): 221–240.

    Article  Google Scholar 

  • Yamamoto, T., 1981. Moored floating breakwater response to regular and irregular waves, Appl. Ocean Res., 3(1): 27–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Koraim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koraim, A.S., Rageh, O.S. Effect of under connected plates on the hydrodynamic efficiency of the floating breakwater. China Ocean Eng 28, 349–362 (2014). https://doi.org/10.1007/s13344-014-0028-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13344-014-0028-1

Key words

Navigation