Skip to main content

Advertisement

Log in

DNA viruses and cancer: insights from evolutionary biology

  • Review Article
  • Published:
VirusDisease Aims and scope Submit manuscript

Abstract

When it comes to understanding the exact mechanisms behind the virus induced cancers, we have often turned to molecular biology. It would be fair to argue that our understanding of cancers caused by viruses has significantly improved since the isolation of Epstein–Barr virus from Burkitt’s lymphoma. However they are some important questions that remain unexplored like what advantage do viruses derive by inducing carcinogenesis? Why do viruses code for the so called oncogenes? Why DNA viruses are disproportionately linked to cancers? These questions have been addressed from the lens of evolutionary biology in this review. The evolutionary analysis of virus induced cancer suggests that persistent strategy of infection could be a stable strategy for DNA viruses and also the main culprit behind their tendency to cause cancer. The framework presented in the review not only explains wider observations about cancer caused by viruses but also offers fresh predictions to test the hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albuquerque TAF, do Val Drummond L, Doherty A, de Magalhães JP. From humans to hydra: patterns of cancer across the tree of life. Biol Rev Camb Philos Soc. 2018;93(3):1715–34. https://doi.org/10.1111/brv.12415.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Anderson RM, May RM. Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press; 1991.

    Google Scholar 

  3. Bofill-Mas S, et al. Potential transmission of human polyomaviruses through the gastrointestinal tract after exposure to virions or viral DNA. J Virol. 2001;75(21):10290–9. https://doi.org/10.1128/JVI.75.21.10290-10299.2001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Carneiro-Proietti AB, Amaranto-Damasio MS, Leal-Horiguchi CF, et al. Mother-to-child transmission of human T-cell lymphotropic viruses-1/2 what we know, and what are the gaps in understanding and preventing this route of infection. J Pediatr Infect Dis Soc. 2014;3(Suppl 1):24–9.

    Article  Google Scholar 

  5. Cavallo F, De Giovanni C, Nanni P, Forni G, Lollini PL. The immune hallmarks of cancer. Cancer Immunol Immunother. 2011;60:319–26.

    Article  CAS  Google Scholar 

  6. Chaurushiya MS, Weitzman MD. Viral manipulation of DNA repair and cell cycle checkpoints. DNA Repair (Amst). 2009;8(9):1166–76.

    Article  CAS  Google Scholar 

  7. Choi KH. Viral polymerases. Adv Exp Med Biol. 2012;726:267–304.

    Article  CAS  Google Scholar 

  8. Dow DE, et al. A review of human herpesvirus 8, the Kaposi's sarcoma-associated herpesvirus, in the pediatric population. J Pediatr Infect Dis Soc. 2013;3(1):66–76. https://doi.org/10.1093/jpids/pit051.

    Article  Google Scholar 

  9. Eshleman E, Shahzad A, Cohrs RJ. Varicella zoster virus latency. Future Virol. 2011;6(3):341–55.

    Article  Google Scholar 

  10. Ewald PW, Swain Ewald HA. Infection, mutation, and cancer evolution. J Mol Med (Berl). 2012;90(535–41):41.

    Google Scholar 

  11. Ewald PW, Swain Ewald HA. Toward a general evolutionary theory of oncogenesis. Evol Appl. 2013;6:70–81. https://doi.org/10.1111/eva.12023.

    Article  PubMed  CAS  Google Scholar 

  12. Garnett CT, Talekar G, Mahr JA, et al. Latent species C adenoviruses in human tonsil tissues. J Virol. 2009;83(6):2417–28. https://doi.org/10.1128/JVI.02392-08.

    Article  PubMed  CAS  Google Scholar 

  13. Giam CZ, Semmes OJ. HTLV-1 infection and adult T-cell leukemia/lymphoma-a tale of two proteins tax and HBZ. Viruses. 2013;8(6):161. https://doi.org/10.3390/v8060161.

    Article  CAS  Google Scholar 

  14. Gillooly JF, Hayward A, Hou C, Burleigh JG. Explaining differences in the lifespan and replicative capacity of cells: a general model and comparative analysis of vertebrates. Proc R Soc B. 2012. https://doi.org/10.1098/rspb.2012.1129.

    Article  PubMed  Google Scholar 

  15. Graham SV. Keratinocyte differentiation-dependent human papillomavirus gene regulation. Viruses. 2017;9(9):245. https://doi.org/10.3390/v9090245.

    Article  PubMed Central  CAS  Google Scholar 

  16. Gravitt PE, Winer RL. Natural history of HPV infection across the lifespan role of viral latency. Viruses. 2017;9(10):267. https://doi.org/10.3390/v9100267Oncogenesis.

    Article  PubMed Central  Google Scholar 

  17. Gravitt PE, Winer RL. Natural history of HPV infection across the lifespan role of viral latency. Viruses. 2017;6(8):e374. https://doi.org/10.1038/oncsis.2017.73.

    Article  CAS  Google Scholar 

  18. Heegaard ED, Brown KE. Human parvovirus B19. Clin Microbiol Rev. 2002;15(3):485–505.

    Article  Google Scholar 

  19. Hesselton RM, Yang WC, Medveczky P, Sullivan JL. Pathogenesis of Herpesvirus sylvilagus infection in cottontail rabbits. Am J Pathol. 1988;133(3):639–47.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Iizasa H, Nanbo A, Nishikawa J, Jinushi M, Yoshiyama H. Epstein–Barr virus (EBV)-associated gastric carcinoma. Viruses. 2012;4(12):3420–39. https://doi.org/10.3390/v4123420.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Itzhaki RF. Corroboration of a major role for herpes simplex virus type 1 in Alzheimer's disease. Front Aging Neurosci. 2018;10:324. https://doi.org/10.3389/fnagi.2018.00324.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kane M, Golovkina T. Common threads in persistent viral infections. J Virol. 2009;84(9):4116–233. https://doi.org/10.1128/JVI.01905-09.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kgatle MM, et al. DNA oncogenic virus-induced oxidative stress, genomic damage, and aberrant epigenetic alterations. Oxid Med Cell Longev. 2017;2017:3179421. https://doi.org/10.1155/2017/3179421.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Korona DA, Lecompte KG, Pursell ZF. The high fidelity and unique error signature of human DNA polymerase epsilon. Nucleic Acids Res. 2010;39(5):1763–73.

    Article  CAS  Google Scholar 

  25. Kuppachi S, Kaur D, Holanda DG, Thomas CP. BK polyoma virus infection and renal disease in non-renal solid organ transplantation. Clin Kidney J. 2015;9(2):310–8.

    Article  CAS  Google Scholar 

  26. Larsen Brendan B, Cole Kenneth L, Worobey Michael. Ancient DNA provides evidence of 27,000-year-old papillomavirus infection and long-term codivergence with rodents. Virus Evol. 2018;4(1):vey014. https://doi.org/10.1093/ve/vey014.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Levican J, et al. Role of BK human polyomavirus in cancer. Infectious agents and cancer. 2018;13(12):5. https://doi.org/10.1186/s13027-018-0182-9.

    Article  CAS  Google Scholar 

  28. Liao JB. Viruses and human cancer. Yale J Biol Med. 2007;79(3–4):115–22.

    PubMed Central  Google Scholar 

  29. Liu C, Xiao Y, Zhang J, et al. Adenovirus infection in children with acute lower respiratory tract infections in Beijing, China, 2007 to 2012. BMC Infect Dis. 2015;15:408. https://doi.org/10.1186/s12879-015-1126-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Martin JL, Maldonado JO, Mueller JD, Zhang W, Mansky LM. Molecular studies of HTLV-1 replication an update. Viruses. 2016;8(2):31. https://doi.org/10.3390/v8020031.

    Article  PubMed Central  CAS  Google Scholar 

  31. McLaughlin-Drubin ME, Munger K. Viruses associated with human cancer. Biochem Biophys Acta. 2007;1782(3):127–50. https://doi.org/10.1016/j.bbadis.2007.12.005.

    Article  PubMed  CAS  Google Scholar 

  32. Moore PS, Chang Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat Rev Cancer. 2010;10(12):878–89. https://doi.org/10.1038/nrc2961.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Murray PR, Rosenthal KS, Pfaller MA. Medical microbiology. Philadelphia: Elsevier Mosby; 2005.

    Google Scholar 

  34. Nisole S, Saïb A. Early steps of retrovirus replicative cycle. Retrovirology. 2004. https://doi.org/10.1186/1742-4690-1-9.

    Article  Google Scholar 

  35. Panfil AR, Martinez MP, Ratner L, Green PL. Human T-cell leukemia virus-associated malignancy. Curr Opin Virol. 2016;20:40–6.

    Article  CAS  Google Scholar 

  36. Percher F, Jeannin P, Martin-Latil S, et al. Mother-to-child transmission of HTLV-1 epidemiological aspects, mechanisms and determinants of mother-to-child transmission. Viruses. 2016;8(2):40. https://doi.org/10.3390/v8020040.

    Article  PubMed Central  CAS  Google Scholar 

  37. Pires EP, Bernardino-Vallinoto CV, Alves DM, et al. Prevalence of infection by JC and BK polyomaviruses in kidney transplant recipients and patients with chronic renal disease. Transpl Infect Dis. 2011;13(6):633–7.

    Article  CAS  Google Scholar 

  38. Risso-Ballester J, Cuevas JM, Sanjuán R. Genome-wide estimation of the spontaneous mutation rate of human adenovirus 5 by high-fidelity deep sequencing. PLoS Pathog. 2016;12(11):e1006013. https://doi.org/10.1371/journal.ppat.1006013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Schiller JT, Lowy DR. Virus infection and human cancer: an overview. In: Chang M, Jeang KT, editors. Viruses and human cancer. Recent results in cancer research, vol. 153. Berlin: Springer; 2014.

    Google Scholar 

  40. Sell S. Infection, stem cells and cancer signals. Curr Pharm Biotechnol. 2011;12(2):182–8.

    Article  CAS  Google Scholar 

  41. Shannon-Lowe C, Rickinson AB, Bell AI. Epstein–Barr virus-associated lymphomas. Philos Trans R Soc Lond B Biol Sci. 2017;372(1732):20160271.

    Article  CAS  Google Scholar 

  42. Slobedman B, Stern JL, Cunningham AL, Abendroth A, Abate DA, Mocarski ES. Impact of human cytomegalovirus latent infection on myeloid progenitor cell gene expression. J Virol. 2004;78:4054–62. https://doi.org/10.1128/JVI.78.8.4054-4062.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Strati K. Changing stem cell dynamics during papillomavirus infection potential roles for cellular plasticity in the viral lifecycle and disease. Viruses. 2017;9(8):221. https://doi.org/10.3390/v9080221.

    Article  PubMed Central  CAS  Google Scholar 

  44. Trgovcich J, Kincaid M, Thomas A, Griessl M, Zimmerman P, Dwivedi V, et al. Cytomegalovirus reinfections stimulate CD8 T-memory inflation. PLoS ONE. 2016;11(11):e0167097. https://doi.org/10.1371/journal.pone.0167097.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Walker EJ, Ghildyal R. Editorial viral interactions with the nucleus. Front Microbiol. 2017;8:951. https://doi.org/10.3389/fmicb.2017.00951.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wolfe ND, Dunavan CP, Diamond J. Origins of major human infectious diseases. Nature. 2007;447:279–83.

    Article  CAS  Google Scholar 

  47. Wu Y. HIV-1 gene expression lessons from provirus and non-integrated DNA. Retrovirology. 2004;1:13. https://doi.org/10.1186/1742-4690-1-1333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zhang B, Song Y, Sun S, et al. Human papillomavirus 11 early protein E6 activates autophagy by repressing AKT/mTOR and Erk/mTOR. J Virol. 2019;93(12):e00172–e219. https://doi.org/10.1128/JVI.00172-19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

I would like to sincerely thank my mentor Pushkar Ganesh Vaidya for his moral support. I am also extremely thankful to my wife Sandhya Nitesh Pandey for all her support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitesh Vinodbhai Pandey.

Ethics declarations

Conflict of interest

The author declares that he does not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, N.V. DNA viruses and cancer: insights from evolutionary biology. VirusDis. 31, 1–9 (2020). https://doi.org/10.1007/s13337-019-00563-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-019-00563-0

Keywords

Navigation