Skip to main content
Log in

Applications of Next Generation High Throughput Sequencing Technologies in Characterization, Discovery and Molecular Interaction of Plant Viruses

  • Review Article
  • Published:
Indian Journal of Virology Aims and scope Submit manuscript

Abstract

Present era of molecular biology is witnessing revolutionary developments in sequencing technology. This advancement has considerably influenced plant virology in the field of diagnostics and host virus interaction. Next generation high-throughput sequencing technology has made it possible to directly detect, identify and discover novel viruses in several plants in an unbiased manner without antibodies or prior knowledge of the virus sequences. Entire viral genome could be sequenced from symptomatic or asymptomatic plants through next generation sequencing of total nucleic acids including small RNAs. It provides census of viral population in a particular ecosystem or cropping system. Viral genome variability, evolution within the host and virus defence mechanism in plants can also be easily understood by massive parallel sequencing. In this article, we provide an overview of the applications of next generation sequencing technology in characterization, discovery and molecular interaction of plant viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams IP, Glover RH, Monger WA, Mumford R, Jackeviciene E, Navalinskiene M, Samuitiene M, Boonham N. Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Mol Plant Pathol. 2009;10(4):537–45.

    Article  PubMed  CAS  Google Scholar 

  2. Al Rwahnih M, Daubert S, Golino D, Rowhani A. Deep sequencing analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a multiple virus infection that includes a novel virus. Virology. 2009;387(2):395–401.

    Article  PubMed  CAS  Google Scholar 

  3. Al Rwahnih M, Daubert S, Úrbez-Torres JR, Cordero F, Rowhani A. Deep sequencing evidence from single grapevine plants reveals a virome dominated by mycoviruses. Arch Virol. 2011;156:397–403.

    Article  PubMed  CAS  Google Scholar 

  4. Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol. 2004;10:535–44.

    Article  Google Scholar 

  5. Barzon L, Lavezzo E, Militello V, Toppo S, Palù G. Applications of next-generation sequencing technologies to diagnostic virology. Int J Mol Sci. 2011;12:7861–84.

    Article  PubMed  CAS  Google Scholar 

  6. Blevins T, Rajeswaran R, Aregger A, Borah BK, Schepetilnikov M, Baerlocher L, Hohn T, Pooggin MM. Massive production of small RNAs from a non-coding region of cauliflower mosaic virus in plant defense and viral counter-defense. Nucleic Acids Res. 2011;39:5003–14.

    Article  PubMed  CAS  Google Scholar 

  7. Boonham N, Glover R, Tomlinson J, Mumford R. Exploiting generic platform technologies for the detection and identification of plant pathogens. Eur J Plant Pathol. 2008;121:355–63.

    Article  CAS  Google Scholar 

  8. Candresse T, Cambra M, Dallot S, Lanneau M, Asensio M, Gorris MT, Revers F, Macquaire G, Olmos A, Boscia D, Quiot JB, Dunez J. Comparison of monoclonal antibodies and PCR assays for the typing of isolates belonging to the D and M serotypes of plum pox virus. Phytopathology. 1998;88:198–204.

    Article  PubMed  CAS  Google Scholar 

  9. Capobianchi MR, Giombini E, Rozera G. Next-generation sequencing technology in clinical virology. Clin Microbiol Infect. 2013;19:15–22.

    Article  PubMed  CAS  Google Scholar 

  10. Clark MF, Adams AN. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol. 1977;34:475–83.

    Article  PubMed  CAS  Google Scholar 

  11. Coetzee B, Freeborough MJ, Maree HJ, Celton JM, Rees DJ, Burger JT. Deep sequencing analysis of viruses infecting grapevines: virome of a vineyard. Virology. 2010;400(2):157–63.

    Article  PubMed  CAS  Google Scholar 

  12. Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD. A metagenomic survey of microbes in honey bee colony collapse disorder. Science. 2007;318:283–7.

    Article  PubMed  CAS  Google Scholar 

  13. Di Serio F, Gisel A, Navarro B, Delgado S, Martínez De Alba ÁE. Deep sequencing of the small RNAs derived from two symptomatic variants of a chloroplastic viroid: implications for their genesis and for pathogenesis. PLoS One. 2009;4(10):e7539. doi:10.1371/journal.pone.0007539.

    Article  PubMed  Google Scholar 

  14. Donaire L, Wang Y, Gonzalez-Ibeas D, Mayer KF, Aranda MA. Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology. 2009;392:203–14.

    Article  PubMed  CAS  Google Scholar 

  15. Fabre F, Montarry J, Coville J, Senoussi R, Simon V. Modelling the evolutionary dynamics of viruses within their hosts: a case study using high-throughput sequencing. PLoS Pathol. 2012;8:e1002654. doi:10.1371/journal.ppat.1002654.

    Article  CAS  Google Scholar 

  16. Giampetruzzia A, Roumia V, Robertoa R, Malossinib U, Yoshikawac N, Nottea PL, Terlizzi F, Credid R, Saldarelli P. A new grapevine virus discovered by deep sequencing of virus-and viroid-derived small RNAs in Cv Pinot gris. Virus Res. 2011;163:262–8.

    Article  Google Scholar 

  17. Hagen C, Frizzi A, Kao J, Jia L, Huang M, Zhang Y, Huang S. Using small RNA sequences to diagnose, sequence, and investigate the infectivity characteristics of vegetable-infecting viruses. Arch Virol. 2011;156:1209–16.

    Article  PubMed  CAS  Google Scholar 

  18. Hu Q, Hollunder J, Niehl A, Kørner CJ, Gereige D. Specific impact of Tobamovirus infection on the Arabidopsis small RNA profile. PLoS One. 2011;6(5):e19549. doi:10.1371/journal.pone.0019549.

    Article  PubMed  CAS  Google Scholar 

  19. Kang S, Mansfield MA, Park B, Geiser DM, Ivors KL, et al. The promise and pitfalls of sequence based identification of plant-pathogenic fungi and oomycetes. Phytopathology. 2010;1:732–7.

    Article  Google Scholar 

  20. Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology. 2009;388:1–7.

    Article  PubMed  CAS  Google Scholar 

  21. Li R, Gao S, Hernandez AG, Wechter WP, Fei Z. Deep sequencing of small RNAs in tomato for virus and viroid identification and strain differentiation. PLoS One. 2012;7(5):e37127. doi:10.1371/journal.pone.0037127.

    Article  PubMed  CAS  Google Scholar 

  22. Martin RM, James D, Levesque CA. Impacts of molecular diagnostic technologies on plant disease management. Ann Rev Phytopathol. 2000;38:207–39.

    Article  CAS  Google Scholar 

  23. Martinez G, Donaire L, Llave C, Pallas V, Gomez G. High-throughput sequencing of hop stunt viroid-derived small RNAs from cucumber leaves and phloem. Mol Plant Pathol. 2010;11:347–59.

    Article  PubMed  CAS  Google Scholar 

  24. Matthews REF. Plant Virology. 3rd ed. Academic Press 1991. ISBN 0-12-480533-1.

  25. Monger WA, Alicai T, Ndunguru J, Kinyua ZM, Potts M, Reeder RH, Miano DW, Adams IP, Boonham N, Glover RH, Smith J. The complete genome sequence of the Tanzanian strain of Cassava brown streak virus and comparison with the Ugandan strain sequence. Arch Virol. 2010;155:429–33.

    Article  PubMed  CAS  Google Scholar 

  26. Mumford R, Boonham N, Tomlinson J, Barker I. Advances in molecular phytodiagnostics—new solutions for old problems. European J Plant Pathol. 2006;116:1–19.

    Article  CAS  Google Scholar 

  27. Navarro B, Pantaleo V, Gisel A, Moxon S, Dalmay T. Deep sequencing of viroid-derived small RNAs from grapevine provides new insights on the role of RNA silencing in plant-viroid interaction. PLoS One. 2009;4(11):e7686. doi:10.1371/journal.pone.0007686.

    Article  PubMed  Google Scholar 

  28. Ng TFF, Duffy S, Polston JE, Bixby E, Vallad GE. Exploring the diversity of plant DNA viruses and their satellites using vector-enabled metagenomics on whiteflies. PLoS One. 2011;6(4):e19050. doi:10.1371/journal.pone.0019050.

    Article  PubMed  CAS  Google Scholar 

  29. Pallett DW, Ho T, Cooper I, Wang H. Detection of cereal yellow dwarf virus using small interfering RNAs and enhanced infection rate with cocksfoot streak virus in wild cocksfoot grass (Dactylis glomerata). J Virol Methods. 2010;168:223–7.

    Article  PubMed  CAS  Google Scholar 

  30. Qi X, Bao FS, Xie Z. Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. PLoS One. 2009;4(3):e4971. doi:10.1371/journal.pone.0004971.

    Article  PubMed  Google Scholar 

  31. Qu F. Plant viruses versus RNAi: simple pathogens reveal complex insights on plant antimicrobial defense. Wiley Interdiscip Rev RNA. 2010;1:22–33.

    PubMed  CAS  Google Scholar 

  32. Quan PL, Briese T, Palacios G, Lipkin WI. Rapid sequence-based diagnosis of viral infection. Antiviral Res. 2008;79:1–5.

    Article  PubMed  CAS  Google Scholar 

  33. Roossinck MJ, Saha P, Wiley GB, Quan J, White JD, Lai H, Chavarrı′a F, Shen G, Roe BA. Ecogenomics: using massively parallel pyrosequencing to understand virus ecology. Mol Ecol. 2010;19(Suppl 1):81–8.

    Article  PubMed  Google Scholar 

  34. Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum Mol Genet. 2010;19:R227–40.

    Article  PubMed  CAS  Google Scholar 

  35. Silva TF, Romanel EAC, Andrade RRS, Farinelli L. Profile of small interfering RNAs from cotton plants infected with the Polerovirus, cotton leafroll dwarf virus. BMC Mol Biol. 2011;12:40.

    Article  PubMed  CAS  Google Scholar 

  36. Studholme DJ, Glover RH, Boonham N. Application of high-throughput DNA sequencing in phytopathology. Ann Rev Phytopathol. 2011;49:87–105.

    Article  CAS  Google Scholar 

  37. Wu Q, Luo Y, Lu R, Lau N, Lai EC, Li WX, Ding SW. Virus discovery by deep sequencing and assembly of virus derived small silencing RNAs. Proc Natl Acad Sci USA. 2010;107(4):1606–11.

    Article  PubMed  CAS  Google Scholar 

  38. Wylie SJ, Jones MGK. The complete genome sequence of a passion fruit woodiness virus isolate from Australia determined using deep sequencing, and its relationship to other potyviruses. Arch Virol. 2011;156:479–82.

    Article  PubMed  CAS  Google Scholar 

  39. Wylie SJ, Jones MGK. Deep sequencing Australian native plant viruses. Oral presentation 1.6. in Abstract book—9th Australasian Plant Virology Workshop (APVW), 16–19 November 2010, Melbourne Australia p 6.

  40. Wylie SJ, Luo H, Li H, Jones MGK. Multiple polyadenylated RNA viruses detected in pooled cultivated and wild plant samples. Arch Virol. 2012;157:271–84.

    Article  PubMed  CAS  Google Scholar 

  41. Szittya G, Moxon S, Pantaleo V, Toth G, Rusholme Pilcher RL. Structural and functional analysis of Viral siRNAs. PLoS Pathogen. 2010;6:e1000838. doi:10.1371/journal.ppat.1000838.

  42. Yan F, Zhang H, Adams MJ, Yang J, Peng J, Antoniw AF, Zhou Y, Chen J. Characterization of siRNAs derived from rice stripe virus in infected rice plants by deep sequencing. Arch Virol. 2010;155:935–40. doi:10.1007/s00705-010-0670-8.

    Article  PubMed  CAS  Google Scholar 

  43. Yang X, Wang Y, Guo W, Xie Y, Xie Q. Characterization of small interfering RNAs derived from the geminivirus/betasatellite complex using deep sequencing. PLoS One. 2011;6(2):e16928. doi:10.1371/journal.pone.0016928.

    Article  PubMed  CAS  Google Scholar 

  44. Zheng L, Wayper PJ, Gibbs AJ, Fourment M, Rodoni BC, Gibbs MJ. Accumulating variation at conserved sites in potyvirus genomes is driven by species discovery and affects degenerate primer design. PLoS One. 2008;3:e1586. doi:10.1371/journal.pone.0001586.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. K. Baranwal or R. K. Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabha, K., Baranwal, V.K. & Jain, R.K. Applications of Next Generation High Throughput Sequencing Technologies in Characterization, Discovery and Molecular Interaction of Plant Viruses. Indian J. Virol. 24, 157–165 (2013). https://doi.org/10.1007/s13337-013-0133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13337-013-0133-4

Keywords

Navigation