Skip to main content
Log in

Parabolic type semigroups: asymptotics and order of contact

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the asymptotic behavior of parabolic type semigroups acting on the unit disk as well as those acting on the right half-plane. We use the asymptotic behavior to investigate the local geometry of the semigroup trajectories near the boundary Denjoy–Wolff point. The geometric content includes, in particular, the asymptotes to trajectories, the so-called limit curvature, the order of contact, and so on. We then establish asymptotic rigidity properties for a broad class of semigroups of parabolic type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Berkson, E., Porta, H.: Semigroups of analytic functions and composition operators. Mich. Math. J. 25, 101–115 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  2. Burns, D., Krantz, S.G.: Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary. J. Am. Math. Soc. 7, 661–676 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Contreras, M.D., Díaz-Madrigal, S.: Analytic flows on the unit disk: angular derivatives and boundary fixed points. Pac. J. Math. 222, 253–286 (2005)

    Article  MATH  Google Scholar 

  4. Contreras, M.D., Díaz-Madrigal, S., Pommerenke, Ch.: Second angular derivatives and parabolic iteration in the unit disk. Trans. Am. Math. Soc. 362, 357–388 (2010)

    Article  MATH  Google Scholar 

  5. Elin, M., Khavinson, D., Reich, S., Shoikhet, D.: Linearization models for parabolic dynamical systems via Abel’s functional equation. Ann. Acad. Sci. Fen. 35, 1–34 (2010)

    MathSciNet  Google Scholar 

  6. Elin, M., Levenshtein, M., Reich, S., Shoikhet, D.: Rigidity results for holomorphic mappings on the unit disk. In: Complex and Harmonic Analysis. Proceedings of the International Conference, Thessaloniki, 2006, pp. 93–110. DEStech Publications Inc (2007)

  7. Elin, M., Reich, S., Shoikhet, D., Yacobzon, F.: Asymptotic behavior of one-parameter semigroups and rigidity of holomorphic generators. Complex Anal. Oper. Theory 2, 55–86 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Elin, M., Shoikhet, D.: Dynamic extension of the Julia–Wolff–Carathéodory theorem. Dyn. Syst. Appl. 10, 421–438 (2001)

    MATH  MathSciNet  Google Scholar 

  9. Elin, M., Shoikhet, D.: Linearization Models for Complex Dynamical Systems. Topics in Univalent Functions, Functions Equations and Semigroup Theory. Birkhäuser, Basel (2010)

  10. Elin, M., Shoikhet, D.: Boundary behavior and rigidity of semigroups of holomorphic mappings. Anal. Math. Phys. 1, 241–258 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Elin, M., Shoikhet, D., Yacobzon, F.: Linearization models for parabolic type semigroups. J. Nonlinear Convex Anal. 9, 205–214 (2008)

    MATH  MathSciNet  Google Scholar 

  12. Shapiro, J.H.: Composition Operators and Classical Function Theory. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  13. Shoikhet, D.: Semigroups in Geometrical Function Theory. Kluwer, Dordrecht (2001)

    Book  MATH  Google Scholar 

  14. Shoikhet, D.: Another look at the Burns–Krantz theorem. J. Anal. Math. 105, 19–42 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Siskakis, A.: Semigroups of composition operators on spaces of analytic functions, a review. Studies on composition operators (Laramie, WY, 1996), pp. 229–252. In: Contemporary Mathematics, vol. 213. American Mathematical Society, Providence (1998)

Download references

Acknowledgments

The study of semigroups whose generators have a non-integer power asymptotic expansion was first proposed by David Shoikhet in joint papers [5] and [11]. The authors are grateful to him for fruitful collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Elin.

Additional information

Dedicated to the 70th birthday of Professor Lawrence Zalcman.

Appendix

Appendix

We complete our analysis with assertions which give more information about the asymptotic behavior of semigroups but are different in nature.

Proposition 5.1

Let \(\Sigma =\{\Phi _{t}\}_{t\ge 0}\subset \hbox {Hol}(\Pi )\) be a semigroup generated by \(\phi \in \mathcal {G}_{\alpha ,\beta }(\Pi )\). Then

$$\begin{aligned} \lim _{t\rightarrow \infty } (t+1)^{\frac{\beta }{\alpha }} \left( (\Phi _t(w)+1)^{\alpha }-(\Phi _t(1)+1)^{\alpha } - \lambda \sigma (w)\right) =\mu \lambda ^{1-\frac{\beta }{\alpha }}\sigma (w). \end{aligned}$$

Proof

We just calculate the limit:

$$\begin{aligned}&\lim _{t\rightarrow \infty } (t+1)^{\frac{\beta }{\alpha }}\left( (\Phi _t+1)^{\alpha }(w)-(\Phi _t+1)^{\alpha }(1) -\lambda \sigma (w)\right) \\&\quad =\lim _{t\rightarrow \infty } (t+1)^{\frac{\beta }{\alpha }}\cdot \int \limits _1^w \left( (\Phi _t(z)+1)^{\alpha }-\lambda \sigma (z)\right) 'dz \\&\quad = \lim _{t\rightarrow \infty } (t+1)^{\frac{\beta }{\alpha }}\cdot \int \limits _1^w \frac{\alpha (\Phi _t(z)+1)^{\alpha -1}\phi \left( \Phi _t(z)\right) -\lambda }{\phi (z)} dz. \end{aligned}$$

Since

$$\begin{aligned}&\lim _{t\rightarrow \infty }(t+1)^{\frac{\beta }{\alpha }} \left( \alpha (\Phi _t(z)+1)^{\alpha -1}\phi \left( \Phi _t(z)\right) -\lambda \right) \\&\quad =\lim _{t\rightarrow \infty }\left( \frac{(t+1)^{\frac{1}{\alpha }}}{(\Phi _t(z)+1)}\right) ^{\beta } \left( \alpha B+\frac{\rho _{1}((\Phi _t(z))}{(\Phi _t(z)+1)^{1-\alpha -\beta }}\right) =\mu \lambda ^{1-\frac{\beta }{\alpha }}, \end{aligned}$$

we conclude that

$$\begin{aligned} \lim _{t\rightarrow \infty } (t+1)^{\frac{\beta }{\alpha }}\left( (\Phi _t(w)+1)^{\alpha }-(\Phi _t(1)+1)^{\alpha } - \lambda \sigma (w)\right) =\mu \lambda ^{1-\frac{\beta }{\alpha }}\sigma (w), \end{aligned}$$

which completes the proof. \(\square \)

The particular case \(\alpha =\beta =1\) is contained in [10, Theorem 4.1(ii)]. Transferring, as above, Proposition 5.1 to semigroups acting in \(\Delta \) yields the following result.

Corollary 5.1

Let \(S=\left\{ F_t\right\} _{t\ge 0}\) be a semigroup of holomorphic self-mappings of \(\Delta \) generated by \(f \in \mathcal {G}_{\alpha ,\beta }(\Delta )\). Then

$$\begin{aligned} \lim _{t\rightarrow \infty } (t+1)^{\frac{\beta }{\alpha }} \left( \frac{1}{(1-F_t(z))^\alpha } - \frac{1}{(1-F_t(0))^\alpha } - \frac{\lambda h(z)}{2^\alpha }\right) =\frac{\mu \lambda ^{1-\frac{\beta }{\alpha }} h(z)}{2^\alpha }. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elin, M., Jacobzon, F. Parabolic type semigroups: asymptotics and order of contact. Anal.Math.Phys. 4, 157–185 (2014). https://doi.org/10.1007/s13324-014-0084-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-014-0084-y

Keywords

Mathematics Subject Classification (2000)

Navigation