Skip to main content
Log in

A Review on Anaglyph 3D Image and Video Watermarking

  • 3DR Review
  • Published:
3D Research

Abstract

Thanks to the rapid growth of internet and the advanced development of 3D technology, 3D images and videos are proliferated over the networks. However, this causes several insecurity problems, and protecting this type of media has become a main challenge for many researchers. 3D watermarking is considered as an efficient solution for 3D data protection. In fact, it consists in embedding a secret key into a 3D content to protect it and in trying to extract it after any attack applied on marked 3D data. Anaglyph is the most popular and economical method among different 3D visualization methods. For this reason, it has become used for many 3D applications. Hence, 3D anaglyph watermarking presents an important research area, and several techniques have been proposed in order to protect this type of media. In this survey paper, the existing anaglyph 3D images and videos watermarking techniques are discussed. This discussion shows that the anaglyph video watermarking field is still not mature and new techniques should be proposed to improve the invisibility/robustness trade-off. In addition, based on the study of anaglyph generation methods, it is concluded that signature can be embedded during the generation stage.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chammem, A., Mitrea, M., & Prêteux, F. (2013). Stereoscopic video watermarking: A comparative study. Annals of Telecommunications, 68(11–12), 673–690.

    Article  Google Scholar 

  2. Luo, T., Jiang, G., Wang, X., Yu, M., Shao, F., & Peng, Z. (2014). Stereo image watermarking scheme for authentication with self-recovery capability using interview reference sharing. Multimedia Tools and Applications, 73(3), 1077–1102.

    Article  Google Scholar 

  3. Luo, T., Jiang, G., Yu, M., Shao, F., Peng, Z., & Ho, Y. S. (2014). Stereo matching based stereo image watermarking for tamper detection and recovery. International Journal of Computational Intelligence Systems, 7(5), 874–881.

    Article  Google Scholar 

  4. Luo, T., Jiang, G., Yu, M., & Xu, H. (2016). Asymmetric self-recovery oriented stereo image watermarking method for three dimensional video system. Multimedia Systems, 22(5), 641–655.

    Article  Google Scholar 

  5. Luo, T., Jiang, G., Yu, M., Xu, H., & Shao, F. (2016). Interview local texture analysis based stereo image reversible data hiding. Digital Signal Processing, 48(c), 116–129.

    Article  MathSciNet  Google Scholar 

  6. MacKay, H. C. (1953). Three-dimensional photography. New York: American Photographic Publishing Company.

    Google Scholar 

  7. Dubois, E. (2001). A projection method to generate anaglyph stereo images. In IEEE International conference on acoustics, speech, and signal processing, (ICASSP’01) (Vol. 3, pp. 1661–1664).

  8. McAllister, D. F., Zhou, Y., & Sullivan, S. (2010). Methods for computing color anaglyphs. Stereoscopic Displays and Applications XXI. International Society for Optics and Photonics, 7524, 75240S.

    Article  Google Scholar 

  9. Li, S., Ma, L., & Ngan, K. N. (2013). Anaglyph image generation by matching color appearance attributes. Signal Processing: Image Communication, 28(6), 597–607.

    Google Scholar 

  10. Ideses, I., & Yaroslavsky, L. (2005). Three methods that improve the visual quality of colour anaglyphs. Journal of Optics A: Pure and Applied Optics, 7(12), 755.

    Article  Google Scholar 

  11. Sanftmann, H., & Weiskopf, D. (2011). Anaglyph stereo without ghosting. Computer Graphics Forum, 30(4), 1251–1259.

    Article  Google Scholar 

  12. Matsuura, F., & Fujisawa, N. (2008). Anaglyph stereo visualization by the use of a single image and depth information. Journal of Visualization, 11(1), 79–86.

    Article  Google Scholar 

  13. Diaz, E. R., & Ponomaryov, V. (2010). Reconstruction of 3D video from 2d real-life sequences Reconstrucción de video 3d desde secuencias reales en 2D. Revista Facultad de Ingeniería Universidad de Antioquia, 56, 111–121.

    Google Scholar 

  14. Lu, Z., Rehman, S. U., Khan, M. S. L., & Li, H. (2013). Anaglyph 3D stereoscopic visualization of 2D video based on fundamental matrix. In IEEE international conference on virtual reality and visualization (ICVRV) (pp. 305–308).

  15. Kushwah, D. S., & Agrawal, P. K. (2014). A survey on digital image watermarking techniques and attacks. Ultra Scientist, 26(3), 221–226.

    Google Scholar 

  16. Garcia, E., & Dugelay, J. L. (2003). Texture-based watermarking of 3D video objects. IEEE Transactions on Circuits and Systems for Video Technology, 13(8), 853–866.

    Article  Google Scholar 

  17. Franco-Contreras, J., Baudry, S., & Doërr, G. (2011). Virtual view invariant domain for 3D video blind watermarking. In 18th IEEE international conference on image processing (ICIP) (pp. 2761–2764).

  18. Gao, X., Zhang, C., Huang, Y., & Deng, Z. (2012). A robust high-capacity affine-transformation-invariant scheme for watermarking 3D geometric models. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 8(2S), 34.

    Google Scholar 

  19. Patana, E., Safonov, I., & Rychagov, M. (2012). Adaptive 3D color anaglyph generation for printing. In The 22nd international conference on computer graphics and vision (pp. 055-060).

  20. Nasir, I. A., & Abdurrman, A. B. (2013). A robust color image watermarking scheme based on image normalization. Lecture Notes in Engineering & Computer Science, 2206(1), 2238–2243.

    Google Scholar 

  21. Prathap, I., & Anitha, R. (2014). Robust and blind watermarking scheme for three dimensional anaglyph images. Computers & Electrical Engineering, 40(1), 51–58.

    Article  Google Scholar 

  22. Usha, D., & Rakesh, Y. (2014). Generation of digital watermarked anaglyph 3D image using DWT. SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE), 1(7), 33–37.

    Google Scholar 

  23. Masoumi, M., & Amiri, S. (2013). A blind scene-based watermarking for video copyright protection. AEU—International Journal of Electronics and Communications, 67(6), 528–535.

    Article  Google Scholar 

  24. Masoumi, M., Rezaei, M., & Hamza, A. B. (2015). A blind spatio-temporal data hiding for video ownership verification in frequency domain. AEU—International Journal of Electronics and Communications, 69(12), 18681879.

    Article  Google Scholar 

  25. Patel, R., & Parth, B. (2015). Robust watermarking for anaglyph 3D images using DWT techniques. International Journal of Engineering and Technical Research (IJETR), 3(6), 55–58.

    Google Scholar 

  26. Zadokar, S. R., Raskar, V. B., & Shinde, S. V. (2013). A digital watermarking for anaglyph 3D images. In 2013 IEEE international conference on advances in computing, communications and informatics (ICACCI) (pp. 483–488).

  27. Zadokar, S. R., & Rathod, R. B. (2015). A robust DWT watermarking for 3D images. International Journal on Emerging Trends in Technology (IJETT), 2(1), 210–214.

    Google Scholar 

  28. Devi, H. S., Imphal, T., & Singh, K. M. (2016). A robust and optimized 3D red-cyan anaglyph blind image watermarking in the DWT domain. Contemporary Engineering Sciences, 9(32), 1575–1589.

    Article  Google Scholar 

  29. Munoz-Ramirez, D. O., Reyes-Reyes, R., Ponomaryov, V., & Cruz-Ramos, C. (2015). Invisible digital color watermarking technique in anaglyph 3D images. In 12th IEEE international conference on electrical engineering, computing science and automatic control (CCE) (pp. 1–6).

  30. Rakesh, Y., & Krishna, R. (2016). Digital watermarked anaglyph 3D images using FrFT. International Journal of Computer Trends and Technology (IJCTT), 41(2), 77–80.

    Google Scholar 

  31. Wang, C., Han, F., & Zhuang, X. (2015). Robust digital watermarking scheme of anaglyphic 3D for RGB color images. International Journal of Image Processing (IJIP), 9(3), 156.

    Google Scholar 

  32. Devi, H. S., & Singh, K. M. (2017). A novel, efficient, robust, and blind imperceptible 3D anaglyph image watermarking. Arabian Journal for Science and Engineering, 42(8), 3521–3533.

    Article  Google Scholar 

  33. Asikuzzaman, M., Alam, M. J., Lambert, A. J., & Pickering, M. R. (2016). Robust DT CWT-based DIBR 3D video watermarking using chrominance embedding. IEEE Transactions on Multimedia, 18(9), 1733–1748.

    Article  Google Scholar 

  34. Rana, S., & Sur, A. (2015). 3D video watermarking using DT-DWT to resist synthesis view attack. In 23rd European signal processing conference (EUSIPCO) (pp. 46–50).

  35. Waleed, J., Jun, H. D., Hameed, S., Hatem, H., & Majeed, R. (2013). Integral algorithm to embed imperceptible watermark into anaglyph 3D video. International Journal of Advancements in Computing Technology, 5(13), 163.

    Google Scholar 

  36. Salih, J. W., Abid, S. H., & Hasan, T. M. (2015). Imperceptible 3D video watermarking technique based on scene change detection. International Journal of Advanced Science and Technology, 82, 11–22.

    Article  Google Scholar 

  37. Dhaou, D., Jabra, S. B., & Zagrouba, E. (2018). An efficient group of pictures decomposition based watermarking for anaglyph 3D video. In The 13th international joint conference on computer vision, imaging and computer graphics theory and applications (VISIGRAPP 2018, VISAPP) (Vol. 4, pp. 501–510).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorra Dhaou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhaou, D., Ben Jabra, S. & Zagrouba, E. A Review on Anaglyph 3D Image and Video Watermarking. 3D Res 10, 13 (2019). https://doi.org/10.1007/s13319-019-0223-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-019-0223-1

Keywords

Navigation