Skip to main content
Log in

An Efficient Stereo Matching Algorithm Based on Four-Moded Census Transform for High-Resolution Images

  • 3DR Express
  • Published:
3D Research

Abstract

By establishing slanted surfaces, PatchMatch stereo (PMS) algorithm can achieve impressive disparity details and high sub-pixel precision. However, it is too unwieldy for practical calculations in handling images with high resolution. In this paper, we improved the PMS algorithm to efficiently handle the high-resolution images. Firstly, four-mode census transform, which can improve matching accuracy and solve the problem of the center pixel distortion effectively, is applied to measure the dissimilarity between pixels, instead of the absolute differences of the gray-value and the gray-value gradient. Utilizing this transform can halve the time of dissimilarity measurement compared to that of PMS. Then, the proposed algorithm adopt the integer disparity plane approximation strategy during the PatchMatch inference procedure. This strategy is applied in the random initialization step, the computation of the matching cost and the process of searching and renewing the minimum matching cost. Finally, the outlier pixels are refined with the post-process steps. Experimental results show that the proposed algorithm is more efficient than the PMS algorithm and generates comparable disparity maps in handling the high-resolution images.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang, Y., Hu, X., Wu, N., Wang, P., Xu, D., & Rong, S. (2017). A depth map generation algorithm based on saliency detection for 2d to 3d conversion. 3D Research, 8(3), 29.

    Article  Google Scholar 

  2. Zhang, K., Lu, J., & Lafruit, G. (2009). Cross-based local stereo matching using orthogonal integral images. IEEE Transactions on Circuits and Systems for Video Technology, 19(7), 1073–1079.

    Article  Google Scholar 

  3. Zhan, Y., Gu, Y., Huang, K., Zhang, C., & Hu, K. (2016). Accurate image-guided stereo matching with efficient matching cost and disparity refinement. IEEE Transactions on Circuits and Systems for Video Technology, 26(9), 1632–1645.

    Article  Google Scholar 

  4. Geng, Y. (2016). Local stereo matching based on information entropy of image. 3D Research, 7(3), 27.

    Article  Google Scholar 

  5. Zabih, R., & Woodfill, J. (1994). Non-parametric local transforms for computing visual correspondence. In Computer visionECCV’94.

  6. Hirschmuller, H. (2007). Stereo processing by semiglobal matching and mutual information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 328–341.

    Article  Google Scholar 

  7. Heo, Y. S. (2016). Two-step mutual information-based stereo matching. Electronics Letters, 52(14), 1225–1227.

    Article  Google Scholar 

  8. Sarkar, I., & Bansal, M. (2007). A wavelet-based multiresolution approach to solve the stereo correspondence problem using mutual information. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 37(4), 1009–1014.

    Article  Google Scholar 

  9. Hamzah, R. A., Ibrahim, H., & Hassan, A. H. A. (2016). Stereo matching algorithm based on per pixel difference adjustment, iterative guided filter and graph segmentation. Journal of Visual Communication and Image Representation, 42, 145–160.

    Article  Google Scholar 

  10. Yoon, K. J., & Kweon, I. S. (2006). Adaptive support-weight approach for correspondence search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4), 650–656.

    Article  Google Scholar 

  11. Hosni, A., Rhemann, C., Bleyer, M., Rother, C., & Gelautz, M. (2011). Fast cost-volume filtering for visual correspondence and beyond. In IEEE conference on computer vision and pattern recognition (Vol. 35, pp. 3017–3024). IEEE Computer Society.

  12. Kolmogorov, V., & Zabih, R. (2001). Computing visual correspondence with occlusions using graph cuts. Ithaca: Cornell University.

    Book  Google Scholar 

  13. Lei, C., Selzer, J., & Yang, Y. H. (2006). Region-tree based stereo using dynamic programming optimization. In IEEE computer society conference on computer vision and pattern recognition (Vol. 2, pp. 2378–2385). IEEE Computer Society.

  14. Sun, J., Li, Y., Kang, S. B., & Shum, H. Y. (2005). Symmetric stereo matching for occlusion handling. In IEEE computer society conference on computer vision and pattern recognition (Vol. 2, pp. 399–406). IEEE Computer Society.

  15. Sun, J., Zheng, N. N., & Shum, H. Y. (2003). Stereo matching using belief propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(7), 787–800.

    Article  Google Scholar 

  16. Žbontar, J., & Lecun, Y. (2015). Computing the stereo matching cost with a convolutional neural network. In Computer vision and pattern recognition (pp. 1592–1599). IEEE.

  17. Luo, W., Schwing, A. G., & Urtasun, R. (2016). Efficient deep learning for stereo matching. In Computer vision and pattern recognition (pp. 5695–5703). IEEE.

  18. Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P., Kennedy, R., & Bachrach, A., et al. (2017). End-to-end learning of geometry and context for deep stereo regression. In International conference on computer vision (pp. 66–75). IEEE.

  19. Shaked, A., & Wolf, L. (2016). Improved stereo matching with constant highway networks and reflective confidence learning. In Computer vision and pattern recognition (pp. 6901–6910). IEEE.

  20. Liang, Z., Liu, H., Qiao, L., Feng, Y., & Chen, W. (2017). Improving stereo matching by incorporating geometry prior into convnet. Electronics Letters, 53(17), 1194–1196.

    Article  Google Scholar 

  21. Li, L., Yu, X., Zhang, S., Zhao, X., & Zhang, L. (2017). 3D cost aggregation with multiple minimum spanning trees for stereo matching. Applied Optics, 56(12), 3411–3420.

    Article  Google Scholar 

  22. Puglia, L., Vigliar, M., & Raiconi, G. (2017). Real-time low-power FPGA architecture for stereo vision. IEEE Transactions on Circuits and Systems II: Express Briefs, 64, 1307–1311.

    Article  Google Scholar 

  23. Pérez-Patricio, M., Aguilar-González, A., Arias-Estrada, M., Hernandez-de Leon, H. R., Camas-Anzueto, J. L., & de Jesús Osuna-Coutiño, J. A. (2016). An FPGA stereo matching unit based on fuzzy logic. Microprocessors and Microsystems, 42, 87–99.

    Article  Google Scholar 

  24. Aguilar-González, A., & Arias-Estrada, M. (2016). An FPGA stereo matching processor based on the sum of hamming distances. In International symposium on applied reconfigurable computing (pp. 66–77). Cham: Springer.

    Google Scholar 

  25. Zha, D., Jin, X., & Xiang, T. (2016). A real-time global stereo-matching on FPGA. Microprocessors and Microsystems, 47, 419–428.

    Article  Google Scholar 

  26. Bleyer, M., Rhemann, C., & Rother, C. (2011). PatchMatch stereo–stereo matching with slanted support windows. In British machine vision conference (Vol. 554, pp. 14.1–14.11).

  27. Chang, T. A., Lu, X., & Yang, J. F. (2017). Robust stereo matching with trinary cross color census and triple image-based refinements. EURASIP Journal on Advances in Signal Processing, 2017(1), 27.

    Article  Google Scholar 

  28. Men, Y., Zhang, G., Men, C., & Li, X. (2015). A stereo matching algorithm based on four-moded census and relative confidence plane fitting. Chinese Journal of Electronics, 24(4), 807–812.

    Article  Google Scholar 

  29. Geiger, A., Roser, M., & Urtasun, R. (2010). Efficient large-scale stereo matching. In Asian conference on computer vision (Vol. 6492, pp. 25–38). Springer.

  30. Jellal, R. A., Lange, M., Wassermann, B., Schilling, A., & Zell, A. (2017). LS-ELAS: Line segment based efficient large scale stereo matching. In IEEE international conference on robotics and automation (pp. 146–152). IEEE.

Download references

Funding

Funding was provided by National Natural Science Foundation of China (Grant Nos. 61401137, 61404043), Key Science and Technology Project of Anhui Province (Grant No. 16030901007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhong Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1903 kb)

Supplementary material 2 (PDF 1884 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Xu, D., Rong, S. et al. An Efficient Stereo Matching Algorithm Based on Four-Moded Census Transform for High-Resolution Images. 3D Res 9, 33 (2018). https://doi.org/10.1007/s13319-018-0185-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-018-0185-8

Keywords

Navigation