Skip to main content
Log in

On the Uncertain Future of the Volumetric 3D Display Paradigm

  • 3DR Express
  • Published:
3D Research

Abstract

Volumetric displays permit electronically processed images to be depicted within a transparent physical volume and enable a range of cues to depth to be inherently associated with image content. Further, images can be viewed directly by multiple simultaneous observers who are able to change vantage positions in a natural way. On the basis of research to date, we assume that the technologies needed to implement useful volumetric displays able to support translucent image formation are available. Consequently, in this paper we review aspects of the volumetric paradigm and identify important issues which have, to date, precluded their successful commercialization. Potentially advantageous characteristics are outlined and demonstrate that significant research is still needed in order to overcome barriers which continue to hamper the effective exploitation of this display modality. Given the recent resurgence of interest in developing commercially viable general purpose volumetric systems, this discussion is of particular relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Holovect.com.

  2. Voxon.co.

  3. Lookingglassfactory.com.

  4. www.3dicon.net/innovation/cspace (last visited November 2016).

References

  1. Blundell, B. G. (2007). Enhanced visualization: making space for 3D images. New York: Wiley.

    Google Scholar 

  2. Blundell, B. G., & Schwarz, A. J. (2000). Volumetric three-dimensional display systems. New York: Wiley.

    Google Scholar 

  3. Chun, W.-S., Napoli, J., Cossairt, O. S., Dorval, R. K., Hall, D. M., Purtell, T. J., II, et al. (2005). Spatial 3D infrastructure: Display-independent software framework, high-speed rendering electronics, and several new displays. Proceedings of the SPIE (Stereoscopic Displays and Virtual Reality Systems XII), 5664, 302–312.

    Article  Google Scholar 

  4. Blundell, B.G. (2010). 3D displays and spatial interaction: exploring the science, art, evolution, and use of 3D technologies. Volume I: From perception to technologies. Walker & Wood. www.barrygblundell.com.

  5. Blundell, B.G. (2011). About 3D volumetric displays. Walker & Wood Ltd. www.barrygblundell.com.

  6. Cossairt, O. S., Napoli, J., Hill, S. L., Dorval, R. K., & Favalora, G. E. (2007). Occlusion-capable multiview volumetric three-dimensional display. Applied Optics, 46(8), 1244–1250.

    Article  Google Scholar 

  7. McAllister, D. F. (Ed.). (1993). Stereo Computer graphics and other true 3D technologies. Princeton: Princeton University Press.

    Google Scholar 

  8. Barry, S. R. (2009). Fixing my gaze. New York: Basic Books.

    Google Scholar 

  9. Blundell, B. G., & Schwarz, A. J. (2002). The classification of volumetric display systems: Characteristics and predictability of the image space. IEEE Transactions on Visualization and Computer Graphics, 8(1), 66–75.

    Article  Google Scholar 

  10. Osmanis, K., & Osmanis, I. (2016). Real-time volumetric imaging technology. Photonics. https://www.photonics.com/Article.aspx?AID=58372 Accessed 7th Mar 2017.

  11. Yoon, S., Baek, H., Min, S., Park, S., Park, M., Yoo, S., et al. (2015). Implementation of active-type lamina 3D display system. Optics Express, 23(12), 15848–15856.

    Article  Google Scholar 

  12. Kumagai, K., Hasegawa, S., & Hayasaki, Y. (2017). Volumetric bubble display. Optica, 4(3), 298–302.

    Article  Google Scholar 

  13. Blundell, B. G., & Schwarz, A. J. (2006). Creative 3-D display and interaction interfaces: A trans-disciplinary approach. New York: Wiley.

    Google Scholar 

  14. Kameyama, K., & Ohtomi, K. (1993). A shape modelling system with a volume scanning display and multisensory input device. Presence, 2(2), 104–111.

    Article  Google Scholar 

  15. Maeda, Y., Miyazaki, D., & Maekawa, S. (2015). Volumetric aerial three-dimensional display based on heterogeneous imaging and image plane scanning. Applied Optics, 54(13), 4109–4115.

    Article  Google Scholar 

  16. Ochiai, Y., Kumagai, K., Hoshi, T., Rekimoto, J., Hasegawa, S., & Hayasaki, Y. (2016). Fairy lights in femtoseconds: Aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields. ACM Transactions on Graphics. doi:10.1145/2850414.

    Google Scholar 

  17. Baird, J.L. (1932). Improvements in or relating to television systems and the like. UK Patent GB373,196.

  18. Parker, M. J., & Wallis, P. A. (1948). Three-dimensional cathode-ray tube display. Journal of IEE, 95, 371–390.

    Google Scholar 

  19. Parker, M. J., & Wallis, P. A. (1949). Discussion on three-dimensional cathode-ray tube displays. Journal of IEE, 96(III)(42), 291–294.

    Google Scholar 

  20. Szilard, J. (1974). An improved three-dimensional display system. Ultrasonics, 12(6), 273–276.

    Article  Google Scholar 

  21. Yamada, H., Masuda, C., Nozaki, T., Nishitani, T., & Miyaji, K. (1984). A 3-D display using a laser and moving screens. ICALEO, 48, 71–77.

    Google Scholar 

  22. Sun, C., Chang, X., Cai, L., & Liu, J. (2014). An improved design of 3D swept-volume volumetric display. Journal of Computers. doi:10.4304/jcp.9.1.235-242.

    Google Scholar 

  23. Sullivan, A. (2003). 58.3: A solid-state multiplanar volumetric display. In Proceedings of the SID’03 digest.

  24. Sullivan, A. (2004). DepthCube solid-state 3D volumetric display. Proceedings of the SPIE, 5291, 279–284.

    Article  Google Scholar 

  25. Favalora, G.E. (2009). Progress in volumetric three-dimensional displays and their applications. In: Frontiers in optics, OSA technical digest (CD), paper FTuT2 (Optical Society of America).

  26. Favalora, G.E., Napoli, J., Hall, D.M., Dorval, R.K., Giovinco, M.G., Richmond, M.J., & Chun, W.S. (2002). 100 Million voxels volumetric display. In Proceedings of the SPIE 4712 (Cockpit Displays IX: Displays for Defense Applications) (pp. 300–312).

  27. Favalora, G.E., Dorval, R.K., Hall, D.M., Giovinco, M., & Napoli, J. (2001). Volumetric three-dimensional display system with rasterization hardware. In A. J. Woods, M. T. Bolas, J. O. Merritt, S. A. Benton (Eds.) Proceedings of the SPIE (vol. 4297, p. 227). Stereoscopic Display and Virtual Reality System VII.

  28. Favalora, G., Hall, D.M., Giovinco, M., Napoli, J., & Dorval, R.K. (2001). A multi-megavoxel volumetric 3-D display system for distributed collaboration. In IEEE Globecom 2000 conference on application of virtual reality technologies for future telecommunication system workshop.

  29. Blundell, B. G. (2015). On alternative approaches to 3D image perception: Monoscopic 3D techniques. 3D Research. doi:10.1007/s13319-015-0047-6.

    Google Scholar 

  30. Anonymous. (1960). New display gives realistic 3D effect. Aviation Week (pp. 66–68).

  31. Lasher, M., Soltan, P., Dahlke, W., Acantilado, N., & MacDonald, M. (1996). Laser projected 3-D volumetric displays. In Proceedings of the SPIE 2650 (Projection Displays II) (pp. 285–295).

  32. Soltan, P., Trias, J., Dahlke, W., Lasher, M., & MacDonald, M. (1994). Laser-based 3D volumetric display system (2nd generation). In SID’94 Proceedings.

  33. Sawalha, L., Tull, M., Gately, M., Sluss, J., Yeary, M., & Barnes, R. (2012). A large 3D swept-volume video display. Journal of Display Technology, 8(5), 256–268.

    Article  Google Scholar 

  34. Yamamoto, O., & Kokubu, M. (2014). Visualization of tangent developables on a volumetric display. In MathUI 2014, CICM Portugal.

  35. Hartwig, R. (1976). Helix laser 3D display. European Patent DE2622802C2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry G. Blundell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blundell, B.G. On the Uncertain Future of the Volumetric 3D Display Paradigm. 3D Res 8, 11 (2017). https://doi.org/10.1007/s13319-017-0122-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-017-0122-2

Keywords

Navigation