Skip to main content
Log in

3D Texture Features Mining for MRI Brain Tumor Identification

  • 3DR Review
  • Published:
3D Research

Abstract

Medical image segmentation is a process to extract region of interest and to divide an image into its individual meaningful, homogeneous components. Actually, these components will have a strong relationship with the objects of interest in an image. For computer-aided diagnosis and therapy process, medical image segmentation is an initial mandatory step. Medical image segmentation is a sophisticated and challenging task because of the sophisticated nature of the medical images. Indeed, successful medical image analysis heavily dependent on the segmentation accuracy. Texture is one of the major features to identify region of interests in an image or to classify an object. 2D textures features yields poor classification results. Hence, this paper represents 3D features extraction using texture analysis and SVM as segmentation technique in the testing methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aik, L. E., & Zainuddin, Z. (2008). An improved fast training algorithm for RBF networks using symmetry-based fuzzy C-means clustering. MATEMATIKA, 24(2), 141–148.

    Google Scholar 

  2. Bernhard, S., & Alexander, J. (2008). Smola. Kernel methods in machine learning, 36(3), 1171–1220.

    MATH  Google Scholar 

  3. Cao, L. J., & Tay, F. E. H. (2001). Financial forecasting using support vector machines. Neural Computing Applications, 10, 184–192.

    Article  MATH  Google Scholar 

  4. Chen, D., & Odobez, J.-M. (2006). Comparison of support vector machine and neural network for text texture verification. Martigny: IDIAP Research Institute.

    Google Scholar 

  5. Chen, L., & Wagenknecht, G. (2006). Topology correction for brain atlas segmentation using a multiscale algorithm. Bildverarbeitung für die Medizin 2007. Berlin: Springer.

    Google Scholar 

  6. Greenberg, D. L., Messer, D. F., Payne, M. E., Macfall, J. R., Provenzale, J. M., Steffens, D. C., et al. (2009). Aging, gender, and the elderly adult brain: an examination of analytical strategies. Neurobiology of Aging, 29(2), 290–302.

    Article  Google Scholar 

  7. Frontzek, T., Navin Lal, T., Rolf Eckmiller, T. (2001). Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels. In Proceedings of IEEE International joint conference on Neural Networks (Vol. 2, pp. 1492–1497).

  8. Habib, T., Zhang, C., Yang, J. Y., Yang, M. Q., & Deng, Y. (2008). Supervised learning method for the prediction of subcellular localization of proteins using amino acid and amino acid pair composition. BMC Genomics, 9(Suppl 1), S16.

    Article  Google Scholar 

  9. Haralick, R. M., Shanmugam, K., & Dinstien, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 6, 610–621.

    Article  Google Scholar 

  10. Hayit, G., Amit, R., & Jacob, G. (2006). Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Transactions on Medical Imaging, 25, 9.

    Google Scholar 

  11. Karpagam, S., & Gowri, S. (2011). Detection of tumor growth by advanced diameter technique using MRI data. In Proceeding of the world congress of Engineering (Vol I), London.

  12. Kapur, T., Grimson, W. E., Wells, W. M., & Kikinis, R. (1996). Segmentation of brain tissue from magnetic resonance images. Medical Image Analysis, 1(2), 109–127.

    Article  Google Scholar 

  13. Borgwardt, Karsten M., Gretton, Arthur, Rasch, Malte J., Kriegel, Hans-Peter, Schölkopf, Bernhard, & Smola, Alex J. (2006). Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics, 22, e49–e57.

    Article  Google Scholar 

  14. Borgwardt, Karsten M., Gretton, Arthur, Rasch, Malte J., Kriegel, Hans-Peter, Schölkopf, Bernhard, & Smola, Alex J. (2006). Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics, 22, 49–57.

    Article  Google Scholar 

  15. Kovalev, V. A., Kruggel, F., Gertz, H., & Von Cramon, D. Y. (2001). Three-Dimensional texture analysis of MRI brain datasets. IEEE Transactions on Medical Imaging, 20(5), 424–433.

    Article  Google Scholar 

  16. Kruggel, K., Chalopin, C., Descombes, X., Kovalev, V., & Rajapakse, J. C. (2006). Segmentation of pathological features in MRI brain datasets. Leipzig, Singapore: Max-Planck-Institute of Cognitive Neuroscience, Nanyang Technological University.

    Google Scholar 

  17. Lanckriet, G. R. G., Cristianini, N., Bartlett, P., El Ghaoui, L., & Jordan, M. I. (2004). Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5, 27–72.

    MATH  Google Scholar 

  18. Lin, H.-T., & Lin, C.-J. (2003). A study on sigmoid kernels for SVM and the training of non-PSD Kernels by SMO-type methods. Taipei: National Taiwan University.

    Google Scholar 

  19. Mahmoud-Ghoneim, D., Toussaint, G., Constans, J., & de Carteines, J. D. (2003). Three dimensional texture analysis in MRI: preliminary evaluation in gliomas. Magnetic Resonance Imaging, 21, 983–987.

    Article  Google Scholar 

  20. Buhmann, M. D. (2003). Radial basis functions: theory and implementations. Cambridge: Cambridge University Press. ISBN 0521633389.

    Book  Google Scholar 

  21. Norouzi, A., Saba, T., Rahim, M. S. M., & Rehman, A. (2012). Visualization and segmentation of 3D Bone from CT images. International Journal of Academic Research, 4(2), 202–208.

    Google Scholar 

  22. Parrado-Hernández, E., Arenas-García, J., Mora-Jiménez, I., & Navia-Vázquez, A. (2003). On problem-oriented kernel refining. Neurocomputing, 55(1–2), 135–150.

    Article  Google Scholar 

  23. Pham, D. L., Xu, D. L., & Prince, J. L. (2000). Current methods in medical image segmentation. The Annual Review of Biomedical Engineering, 2, 315–337.

    Article  Google Scholar 

  24. Rad, A. E., Rahim, M. S. M., Rehman, A., Altameem, A., & Saba, T. (2013). Evaluation of current dental radiographs segmentation approaches in computer-aided applications. IETE Technical Review, 30(3), 210–222.

    Article  Google Scholar 

  25. Rahayu H. (2004). Bioactivity prediction and compound classification using neural network and support vector machine: a comparison. Dissertation Universiti Teknologi Malaysia, Johor Bahru.

  26. Rahim, M. S. M., Rehman, A., Sholihah, N., Kurniawan, F., & Saba, T. (2012). Region-based features extraction in ear biometrics. International Journal of Academic Research, 4(1), 37–42.

    Google Scholar 

  27. Rehman, A., & Saba, T. (2012). Neural Network for Document Image Preprocessing. Artificial Intelligence Review. doi:10.1007/s10462-012-9337-z.

    Google Scholar 

  28. Rehman, A., & Saba, T. (2013). An intelligent model for visual scene analysis and compression. The International Arab Journal of Information Technology, 10(2), 126–136.

    Google Scholar 

  29. Rehman, A., & Saba, T. (2012). Evaluation of artificial intelligent techniques to secure information in enterprises. Artificial Intelligence Review. doi:10.1007/s10462-012-9372-9.

    Google Scholar 

  30. Saba, T., Alzorani, S., & Rehman, A. (2012). Expert system for offline clinical guidance and treatment. Life Science Journal, 9(4), 2639–2658.

    Google Scholar 

  31. Saba, T., & Rehman, A. (2012). Effects of artificially intelligent tools on pattern recognition. International Journal of Machine Learning and Cybernetics, 4, 155–162. doi:10.1007/s13042-012-0082-z.

    Article  Google Scholar 

  32. Saba, T., Rehman, A., & Sulong, G. (2010). An intelligent approach to image denoising. Journal of Theoretical and Applied Information Technology, 17(1), 32–36.

    Google Scholar 

  33. Schölkopf, B., & Smola, A. J. (2008). Kernel methods in machine learning. Annals of Statistics, 36(3), 1171–1220.

    Article  MATH  MathSciNet  Google Scholar 

  34. Shawe-Taylor, J., & Nello, C. (2004). Kernel methods for pattern analysis. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  35. Simian, D. (2007). A model for a complex polynomial SVM kernel. In Proceedings of the 8-th WSEAS International Conference on Simulation, Modelling and Optimization, Santander. Within Mathematics and Computers in Science and Engineering (pp. 164–170). IEEE publisher.

  36. Vishwanathan, S. V., Smola, A. J., & Vidal, R. (2007). Binet–Cauchy kernels on dynamical systems and its application to the analysis of dynamic scenes. International Journal of Computer Vision, 73(1), 95–119.

    Article  Google Scholar 

  37. Tu, Z., Narr, K. L., Dollar, P., Dinov, I., Thompson, P. M., & Toga, A. W. (2007). Brain anatomical structure segmentation by hybrid discriminative/generative models. IEEE transactions on medical imaging, 27(4), 495–508.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanzila Saba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahim, M.S.M., Saba, T., Nayer, F. et al. 3D Texture Features Mining for MRI Brain Tumor Identification. 3D Res 5, 3 (2014). https://doi.org/10.1007/s13319-013-0003-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13319-013-0003-2

Keywords

Navigation