Skip to main content
Log in

Determination of the Pharmacokinetics and Tissue Distribution of Methyl 3,4-Dihydroxybenzoate (MDHB) in Mice Using Liquid Chromatography-Tandem Mass Spectrometry

  • Original Research Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Methyl 3,4-dihydroxybenzoate (MDHB) has the potential to prevent neurodegenerative diseases (NDDs). The present work aims to reveal the pharmacokinetics and tissue distribution characteristics of MDHB.

Methods

The pharmacokinetics and tissue distribution of MDHB were analyzed using LC-MS/MS after a single intragastric administration (50 to 450 mg/kg) in mice, and samples were collected from five animals at specific time points.

Results

Pharmacokinetic parameters of MDHB following intragastric administrations were: the time to peak concentration (Tmax) ranged from 0.033 to 0.07 h, the peak concentration (Cmax) ranged from 12,379.158 to 109798.712 μg/l, the elimination half-life (t1/2z) ranged from 0.153 to 1.291 h, the area under the curve (AUC0–∞) ranged from 640.654 to 20,241.081 μg/l × h, the mean residence time (MRT0–∞) ranged from 0.071 to 0.206 h, the apparent volume of distribution (Vz/F) ranged from 17.538 to 45.244 l/kg, and the systemic clearance (Clz/F) ranged from 22.541 to 80.807 l/h/kg. The oral bioavailability of MDHB was 23%. The maximum MDHB content was detected in the stomach, and the minimum content was observed in the testes; the peak content in the brain was 15,666.93 ng/g.

Conclusions

The pharmacokinetic characteristics of MDHB include fast absorption, high systemic clearance, a short half-life and an oral bioavailability of 23%. Additionally, MDHB permeates the blood-brain barrier (BBB) and is rapidly distributed to all organs. The identification of the pharmacokinetics of MDHB following its oral administration will contribute to further preclinical and clinical studies of its effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2017;13:325–73.

    Article  Google Scholar 

  2. Elufioye TO, Berida TI, Habtemariam S. Plants-derived neuroprotective agents: cutting the cycle of cell death through multiple mechanisms. Evid Based Complement Altern Med. 2017. https://doi.org/10.1155/2017/3574012.

    Article  Google Scholar 

  3. Kim GH, Kim JE, Rhie SJ, Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol. 2015;24(4):325–40.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kumar V, Sami N, Kashav T, Islam A, Ahmad F, Hassan MI. Protein aggregation and neurodegenerative diseases: from theory to therapy. Eur J Med Chem. 2016;124:1105–20.

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Qin ZH. Molecular and cellular mechanisms of excitotoxic neuronal death. Apoptosis. 2010;15(11):1382–402.

    Article  CAS  PubMed  Google Scholar 

  6. Kempuraj D, Thangavel R, Selvakumar GP, Zaheer S, Ahmed ME, Raikwar SP, et al. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front Cell Neurosci. 2017;11:216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang W, Cai L, Geng HJ, Su CF, Yan L, Wang JH, et al. Methyl 3,4-dihydroxybenzoate extends the lifespan of Caenorhabditis elegans, partly via W06A7.4 gene. Exp Gerontol. 2014;60:108–16.

    Article  CAS  PubMed  Google Scholar 

  8. Trippier PC, Jansen Labby K, Hawker DD, Mataka JJ, Silverman RB. Target- and mechanism-based therapeutics for neurodegenerative diseases: strength in numbers. J Med Chem. 2013;56(8):3121–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bi DL, Wen L, Xiong W, Shen Y. Development of potential therapeutic targets of and approaches to Alzheimer disease. Chin J Pharmacol Toxicol. 2015;29(04):507–36.

    CAS  Google Scholar 

  10. Kazim SF, Iqbal K. Neurotrophic factor small-molecule mimetics mediated neuroregeneration and synaptic repair: emerging therapeutic modality for Alzheimer’s disease. Mol Neurodegener. 2016;11(1):50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu WQ, Gong XJ, Zhou X, Zhao C, Chen HG. Chemiacal constituents and bioactivity of Kalimeris indica. China J Chin Mater Med. 2010;35(23):3172–4.

    CAS  Google Scholar 

  12. Ma L, Li JM, Chen YQ, Li Y, Guo XJ. Determination of 3, 4-dihydroxy methyl benzoate in Hedyotis diffusa Willd by HPLC. LishiZhen Med Mater Med Res. 2009;20(03):528–9.

    CAS  Google Scholar 

  13. Zhang Z, Zhou X, Zhou XW, Xu X, Liao MJ, Yan L, et al. Methyl 3,4-dihydroxybenzoate promotes neurite outgrowth of cortical neurons cultured in vitro. Neural Regen Res. 2012;7(13):971–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Z, Cai L, Zhou XW, Su C, Xiao F, Gao Q, et al. Methyl 3,4-dihydroxybenzoate promote rat cortical neurons survival and neurite outgrowth through the adenosine A2a receptor/PI3 K/Akt signaling pathway. NeuroReport. 2015;26(6):367–73.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou XW, Zhang Z, Su CF. Methyl 3,4-dihydroxybenzoate protects primary cortical neurons against Aβ25–35-induced neurotoxicity through mitochondria pathway. J Neurosci Res. 2013;91:1215–25.

    Article  CAS  PubMed  Google Scholar 

  16. Zhou X, Su CF, Zhang Z, Wang CY, Luo JQ, Zhou XW, et al. Neuroprotective effects of methyl 3,4-dihydroxybenzoate against H2O2-induced apoptosis in RGC-5 cells. J Pharmacol Sci. 2014;125(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  17. Cai L, Wang LF, Pan JP, Mi XN, Zhang Z, Geng HJ. Neuroprotective effects of methyl 3,4-dihydroxybenzoate against TBHP-induced oxidative damage in SH-SY5Y Cells. Molecule. 2016;21(8):1071.

    Article  CAS  Google Scholar 

  18. Zhang J, Xu D, Ouyang H, Hu S, Li A, Luo H, et al. Neuroprotective effects of 3,4 dihydroxybenzoate in a mouse model of retinitis pigmentosa. Exp Eye Res. 2017;162:86–96.

    Article  CAS  PubMed  Google Scholar 

  19. Guidance for industry, bioanalytical method validation. US Food and Drug Administration. 2013. https://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm368107.pdf. Accessed 15 Dec 2017.

  20. Zhong DF, Li G, Liu CX. Guidance on bioanalysis: method validation and analysis of study samples (draft). Drug Eval Res. 2011;34(06):409–15.

    Google Scholar 

  21. Guidance for non-clinical pharmacokinetics study. China Food and Drug Administration. 2014. http://www.sda.gov.cn/WS01/CL1616/101019.html. Accessed 15 Dec 2017.

  22. Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem. 2003;75(13):3019–30.

    Article  CAS  PubMed  Google Scholar 

  23. Xu ZY. Studies on pharmacokinetic and metabolic mechanism of Timosaponin B-II. Shanghai: Second Military Medical University; 2013.

    Google Scholar 

  24. Hughes JH, Upton RN, Foster DJR. Comparison of non-compartmental and mixed effect modelling methods for establishing bioequivalence for the case of two compartment kinetics and censored concentrations. J Pharmacokinet Pharmacodyn. 2017;44(3):233–44.

    Article  CAS  PubMed  Google Scholar 

  25. Chen C, Xu L, Zheng QS. Study of the algorithm of elimination half-life time in pharmackinetics. Chin J Clin Pharmacol Ther. 2013;18(08):891–7.

    Google Scholar 

  26. Wang GJ. Pharmacokinetics. 1st ed. Beijing: Chemical Industry Press; 2005.

    Google Scholar 

  27. Cao YX. Discussion on apparent distribution volume in pharmacology textbooks. Negative. 2013;4(04):31–2.

    Google Scholar 

  28. Peters SA, Jones CR, Ungell AL, Hatley OJ. Predicting drug extraction in the human gut wall: assessing contributions from drug metabolizing enzymes and transporter proteins using preclinical models. Clin Pharmacokinet. 2016;55(6):673–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aungst BJ. Optimizing oral bioavailability in drug discovery: an overview of design and testing strategies and formulation options. J Pharm Sci. 2017;106(4):921–9.

    Article  CAS  PubMed  Google Scholar 

  30. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1–3):3–26.

    Article  CAS  PubMed  Google Scholar 

  31. Wu BJ, Kulkarni K, Basu S, Zhang SX, Hu M. First-pass metabolism via UDP-glucuronosyltransferase: a barrier to oral bioavailability of phenolics. J Pharm Sci. 2011;100(9):3655–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jeon JS, Oh SJ, Lee JY, Ryu CS, Kim YM, Lee BH, et al. Metabolic characterization of meso-dihydroguaiaretic acid in liver microsomes and in mice. Food Chem Toxicol. 2015;76:94–102.

    Article  CAS  PubMed  Google Scholar 

  33. Alavijeh MS, Chishty M, Qaiser MZ, Palmer AM. Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx. 2005;2(4):554–71.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gribkoff VK, Kaczmarek LK. The need for new approaches in CNS drug discovery: why drugs have failed, and what can be done to improve outcomes. Neuropharmacology. 2017;120:11–9.

    Article  CAS  PubMed  Google Scholar 

  35. Jin LW, Wei WF, Gao Y. Research progress in penetration mechanism of chemical constituents in chinese materia medica into blood-brain barrier and penetration enhancing methods. Chin Tradit Herb Drugs. 2013;44(15):2183–8.

    CAS  Google Scholar 

  36. Deng QY, Dong J. The research progress of chinese herb and its active ingredient through blood-brain barrier mechanism. Chin J Gerontol. 2011;31(18):3639–41.

    CAS  Google Scholar 

  37. Mikitsh JL, Chacko AM. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. Perspect Med Chem. 2014;6:11–24.

    Google Scholar 

  38. Jiang RG, Qi XR. Blood brain barrier model and central nervous system drug transport evaluation. Chin Pharm J. 2012;47(11):880–3.

    CAS  Google Scholar 

  39. Sanchez-Covarrubias L, Slosky LM, Thompson BJ, Davis TP, Ronaldson PT. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des. 2014;20(10):1422–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang DL, Zhu, Humphreys WG. Drug metabolism in drug design and development- basic concepts and practice, vol. 1. Beijing: People’s Military Medical Press; 2011.

    Google Scholar 

  41. Agundez JA, Jimenez-Jimenez FJ, Alonso-Navarro H, Garcia-Martin E. Drug and xenobiotic biotransformation in the blood-brain barrier: a neglected issue. Front Cell Neurosci. 2014;8:335.

    PubMed  PubMed Central  Google Scholar 

  42. Zhang ZQ, Sheng L, Li Y. Drug glucuronidation and disposition in brain. Acta Pharm Sin. 2016;51(11):1674–80.

    Google Scholar 

  43. Wang XY, Yan KJ, Ma XH, Li W, Chu Y, Guo JH, et al. Simultaneous determination and pharmacokinetic study of protocatechuic aldehyde and its major active metabolite protocatechuic acid in rat plasma by liquid chromatography-tandem mass spectrometry. J Chromatogr Sci. 2016;54(5):697–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu M, Fu G, Qiao X, Wu WY, Guo H, Liu AH, et al. HPLC method for comparative study on tissue distribution in rat after oral administration of salvianolic acid B and phenolic acids from Salvia miltiorrhiza. Biomed Chromatogr. 2007;21:1052–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Min Luo.

Ethics declarations

Funding

This work was supported by grants from the National Natural Science Foundation Committee of China (grant nos. 81473296, 81173037 and 81202519), the National Program on Key Basic Research Project (973 Program; no. 2011CB707500) and the Guangdong Provincial Department of Science and Technology (grant nos. 2012B050300018 and 2010B030700018).

Conflict of Interest

None of the authors have conflicts of interest to declare.

Ethical Approval

The animal experiments adhered to the “Jinan University Medical College Animal Use Ordinance” and were approved by the Ethics Committee of the Medical School of Jinan University.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 905 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J.H., Hu, S.H., Su, J.Y. et al. Determination of the Pharmacokinetics and Tissue Distribution of Methyl 3,4-Dihydroxybenzoate (MDHB) in Mice Using Liquid Chromatography-Tandem Mass Spectrometry. Eur J Drug Metab Pharmacokinet 44, 237–249 (2019). https://doi.org/10.1007/s13318-018-0512-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-018-0512-8

Navigation