Skip to main content
Log in

Therapeutic Potential and Utility of Elacridar with Respect to P-glycoprotein Inhibition: An Insight from the Published In Vitro, Preclinical and Clinical Studies

  • Review Article
  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Abstract

The occurrence of efflux mechanisms via Permeability-glycoprotein (P-gp) recognized as an important physiological process impedes drug entry or transport across membranes into tissues. In some instances, either low oral bioavailability or lack of brain penetration has been attributed to P-gp mediated efflux activity. Therefore, the objective of development of P-gp inhibitors was to facilitate the attainment of higher drug exposures in tissues. Many third-generation P-gp inhibitors such as elacridar, tariquidar, zosuquidar, etc. have entered clinical development to fulfil the promise. The body of evidence from in vitro and in vivo preclinical and clinical data reviewed in this paper provides the basis for an effective blockade of P-gp efflux mechanism by elacridar. However, clinical translation of the promise has been elusive not just for elacridar but also for other P-gp inhibitors in this class. The review provides introspection and perspectives on the lack of clinical translation of this class of drugs and a broad framework of strategies and considerations in the potential application of elacridar and other P-gp inhibitors in oncology therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Russel FGM (2010) Transporters: Importance in drug absorption, distribution, and removal. In: Pang K, Sandy, Rodrigues, A. David, Peter, Raimund M (eds) In Enzyme- and transporter-based drug–drug interactions. Springer: New York

  2. Varma MV, Ashokraj Y, Dey CS, Panchagnula R. P-glycoprotein inhibitors and their screening: a perspective from bioavailability enhancement. Pharmacol Res. 2003;48:347–59. doi:10.1016/S1043-6618(03)00158-0.

    Article  CAS  PubMed  Google Scholar 

  3. Fredriksson R, Nordstrom KJ, Stephansson O, Hagglund MG, Schioth HB. The solute carrier (SLC) complement of the human genome: phylogenetic classification reveals four major families. FEBS Lett. 2008;582:3811–6. doi:10.1016/j.febslet.2008.10.016.

    Article  CAS  PubMed  Google Scholar 

  4. Mukhopadhyay T, Batsakis JG, Kuo MT. Expression of the mdr (P-glycoprotein) gene in Chinese hamster digestive tracts. J Natl Cancer Inst. 1998;80:269–75. doi:10.1093/jnci/80.4.269.

    Article  Google Scholar 

  5. Demeule M, Labelle M, Regina A, Berthelet F, Beliveau R. Isolation of endothelial cells from brain, lung, and kidney: expression of the multidrug resistance P-glycoprotein isoforms. Biochem Biophys Res Commun. 2001;281:827–34. doi:10.1006/bbrc.2001.4312.

    Article  CAS  PubMed  Google Scholar 

  6. Cordon-Cardo C, O’Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR, Bertino JR. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci. 1989;86:695–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fromm MF. P-glycoprotein: a defence mechanism limiting oral bioavailability and CNS accumulation of drugs. Int J Clin Pharmacol Ther. 2000;38:69–74.

    Article  CAS  PubMed  Google Scholar 

  8. Wijnholds J, deLange EC, Scheffer GL, van den Berg DJ, Mol CA, van der Valk M, Schinkel AH, Scheper RJ, Breimer DD, Borst P. Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier. J Clin Invest. 2000;105:279–85. doi:10.1172/JCI8267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Westphal K, Weinbrenner A, Giessmann T, Stuhr M, Franke G, Zschiesche M, Oertel R, Terhaag B, Kroemer HK, Siegmund W. Oral bioavailability of digoxin is enhanced by talinolol: evidence for involvement of intestinal P-glycoprotein. Clin Pharmacol Ther. 2000;68:6–12. doi:10.1067/mcp.2000.107579.

    Article  CAS  PubMed  Google Scholar 

  10. Patil S, Dash RP, Anandjiwala S, Nivsarkar M. Simultaneous quantification of berberine and lysergol by HPLC-UV: evidence that lysergol enhances the oral bioavailability of berberine in rats. Biomed Chromatogr. 2012;26:1170–5. doi:10.1002/bmc.2674.

    Article  CAS  PubMed  Google Scholar 

  11. Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting P-glycoprotein. Cancer Control. 2003;10:159–65.

    Article  PubMed  Google Scholar 

  12. König J, Müller F, Fromm MF. Transporters and drug–drug interactions: Important determinants of drug disposition and effects. Pharmacol Rev. 2013;65:944–66. doi:10.1124/pr.113.007518.

    Article  PubMed  CAS  Google Scholar 

  13. Shapiro AB, Ling V. Effect of quercetin on Hoechst 33342 transport by purified and reconstituted P-glycoprotein. Biochem Pharmacol. 1997;53:587–96. doi:10.1016/S0006-2952(96)00826-X.

    Article  CAS  PubMed  Google Scholar 

  14. Drori S, Eytan GD, Assaraf YG. Potentiation of anticancer drug cytotoxicity by multidrug-resistance chemosensitizers involves alterations in membrane fluidity leading to increased membrane permeability. Eur J Biochem. 1995;228:1020–9. doi:10.1111/j.1432-1033.1995.1020m.x.

    Article  CAS  PubMed  Google Scholar 

  15. Fox E, Bates SE. Tariquidar (XR9576): a P-glycoprotein drug efflux pump inhibitor. Expert Rev Anticancer Ther. 2007;7:447–59. doi:10.1586/14737140.7.4.447.

    Article  CAS  PubMed  Google Scholar 

  16. Stewart A, Steiner J, Mellows G, Laguda B, Norris D, Bevan P. Phase I trial of XR9576 in healthy volunteers demonstrates modulation of P-glycoprotein in CD56 + lymphocytes after oral and intravenous administration. Clin Cancer Res. 2000;6:4186–91.

    CAS  PubMed  Google Scholar 

  17. Lê LH, Moore MJ, Siu LL, Oza AM, MacLean M, Fisher B, Chaudhary A, de Alwis DP, Slapak C, Seymour L. Phase I study of the multidrug resistance inhibitor zosuquidar administered in combination with vinorelbine in patients with advanced solid tumours. Cancer Chemother Pharmacol. 2005;56:154–60. doi:10.1007/s00280-004-0942-7.

    Article  PubMed  CAS  Google Scholar 

  18. Sandler A, Gordon M, De Alwis DP, Pouliquen I, Green L, Marder P, Chaudhary A, Fife K, Battiato L, Sweeney C, Jordan C, Burgess M, Slapak CA. A Phase I trial of a potent P-glycoprotein inhibitor, zosuquidar trihydrochloride (LY335979), administered intravenously in combination with doxorubicin in patients with advanced malignancy. Clin Cancer Res. 2004;210:3265–72. doi:10.1158/1078-0432.CCR-03-0644.

    Article  Google Scholar 

  19. Falasca M, Linton KJ. Investigational ABC transporter inhibitors. Investigational ABC transporter inhibitors. Expert Opin Investig Drugs. 2012;21:657–66. doi:10.1517/13543784.2012.679339.

    Article  CAS  PubMed  Google Scholar 

  20. Colabufo NA, Berardi F, Cantore M, Contino M, Inglese C, Niso M, Perrone R. Perspectives of P-glycoprotein modulating agents in oncology and neurodegenerative diseases: pharmaceutical, biological, and diagnostic potentials. J Med Chem. 2010;53:1883–97. doi:10.1021/jm900743c.

    Article  CAS  PubMed  Google Scholar 

  21. Fox E, Widemann BC, Pastakia D, Chen CC, Yang SX, Cole D, Balis FM. Pharmacokinetic and pharmacodynamic study of tariquidar (XR9576), a P-glycoproteininhibitor, in combination with doxorubicin, vinorelbine, or docetaxel in children and adolescents with refractory solid tumors. Cancer Chemother Pharmacol. 2015;76:1273–83. doi:10.1007/s00280-015-2845-1.

    Article  CAS  PubMed  Google Scholar 

  22. Srinivas NR. Understanding the role of tariquidar, a potent Pgp inhibitor, in combination trials with cytotoxic drugs: what is missing? Cancer Chemother Pharmacol. 2016;78:1097–8. doi:10.1007/s00280-016-3044-4.

    Article  PubMed  Google Scholar 

  23. O’Neill AJ, Prencipe M, Dowling C, Fan Y, Mulrane L, Gallagher WM, O’Connor D, O’Connor R, Devery A, Corcoran C, Rani S, O’Driscoll L, Fitzpatrick JM, Watson RW. Characterisation and manipulation of docetaxel resistant prostate cancer cell lines. Mol Cancer. 2011;10:126. doi:10.1186/1476-4598-10-126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Warmann S, Göhring G, Teichmann B, Geerlings H, Fuchs J. MDR1 modulators improve the chemotherapy response of human hepatoblastoma to doxorubicin in vitro. J Pediatr Surg. 2002;37:1579–84. doi:10.1053/jpsu.2002.36188.

    Article  PubMed  Google Scholar 

  25. Wong HL, Bendayan R, Rauth AM, Wu XY. Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer. J Control Release. 2006;116:275–84. doi:10.1016/j.jconrel.2006.09.007.

    Article  CAS  PubMed  Google Scholar 

  26. Marchetti S, Oostendorp RL, Pluim D, van Eijndhoven M, van Tellingen O, Schinkel AH, Versace R, Beijnen JH, Mazzanti R, Schellens JH. In vitro transport of gimatecan (7-t-butoxyiminomethylcamptothecin) by breast cancer resistance protein, P-glycoprotein, and multidrug resistance protein 2. Mol Cancer Ther. 2007;6:3307–13. doi:10.1158/1535-7163.

    Article  CAS  PubMed  Google Scholar 

  27. Takahata T, Ookawa K, Suto K, Tanaka M, Yano H, Nakashima O, Kojiro M, Tamura Y, Tateishi T, Sakata Y, Fukuda S. Chemosensitivity determinants of irinotecan hydrochloride in hepatocellular carcinoma cell lines. Basic Clin Pharmacol Toxicol. 2008;102:399–407. doi:10.1111/j.1742-7843.2007.00199.x.

    Article  CAS  PubMed  Google Scholar 

  28. Luo FR, Paranjpe PV, Guo A, Rubin E, Sinko P. Intestinal transport of irinotecan in Caco-2 cells and MDCK II cells overexpressing efflux transporters Pgp, cMOAT, and MRP1. Drug Metab Dispos. 2002;30:763–70. doi:10.1124/dmd.30.7.763.

    Article  CAS  PubMed  Google Scholar 

  29. Shen H, Lee FY, Gan J. Ixabepilone, a novel microtubule-targeting agent for breast cancer, is a substrate for P-glycoprotein (Pgp/MDR1/ABCB1) but not breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther. 2011;337:423–32. doi:10.1124/jpet.110.175604.

    Article  CAS  PubMed  Google Scholar 

  30. Xia CQ, Liu N, Yang D, Miwa G, Gan LS. Expression, localization, and functional characteristics of breast cancer resistance protein in Caco-2 cells. Drug Metab Dispos. 2005;33:637–43. doi:10.1124/dmd.104.003442.

    Article  CAS  PubMed  Google Scholar 

  31. Ceckova M, Libra A, Pavek P, Nachtigal P, Brabec M, Fuchs R, Staud F. Expression and functional activity of breast cancer resistance protein (BCRP, ABCG2) transporter in the human choriocarcinoma cell line BeWo. Clin Exp Pharmacol Physiol. 2006;33:58–65. doi:10.1111/j.1440-1681.2006.04324.x.

    Article  CAS  PubMed  Google Scholar 

  32. Tallkvist J, Yagdiran Y, Danielsson L, Oskarsson A. A model of secreting murine mammary epithelial HC11 cells comprising endogenous Bcrp/Abcg2 expression and function. Cell Biol Toxicol. 2015;31:111–20. doi:10.1007/s10565-015-9298-5.

    Article  CAS  PubMed  Google Scholar 

  33. Stordal B, Hamon M, McEneaney V, Roche S, Gillet JP, O’Leary JJ, Gottesman M, Clynes M. Resistance to paclitaxel in a cisplatin-resistant ovarian cancer cell line is mediated by P-glycoprotein. PLoS One. 2012;7:e40717. doi:10.1371/journal.pone.0040717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. O’Connor R, Ooi MG, Meiller J, Jakubikova J, Klippel S, Delmore J, Richardson P, Anderson K, Clynes M, Mitsiades CS, O’Gorman P. The interaction of bortezomib with multidrug transporters: implications for therapeutic applications in advanced multiple myeloma and other neoplasias. Cancer Chemother Pharmacol. 2013;71:1357–68. doi:10.1007/s00280-013-2136-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Declèves X, Bihorel S, Debray M, Yousif S, Camenisch G, Scherrmann JM. ABC transporters and the accumulation of imatinib and its active metabolite CGP74588 in rat C6 glioma cells. Pharmacol Res. 2008;57:214–22. doi:10.1016/j.phrs.2008.01.006.

    Article  PubMed  CAS  Google Scholar 

  36. Sato H, Siddig S, Uzu M, Suzuki S, Nomura Y, Kashiba T, Gushimiyagi K, Sekine Y, Uehara T, Arano Y, Yamaura K, Ueno K. Elacridar enhances the cytotoxic effects of sunitinib and prevents multidrug resistance in renal carcinoma cells. Eur J Pharmacol. 2015;746:258–66. doi:10.1016/j.ejphar.2014.11.02.

    Article  CAS  PubMed  Google Scholar 

  37. Neumanova Z, Cerveny L, Greenwood SL, Ceckova M, Staud F. Effect of drug efflux transporters on placental transport of antiretroviral agent abacavir. Reprod Toxicol. 2015;57:176–82. doi:10.1016/j.reprotox.2015.07.070.

    Article  CAS  PubMed  Google Scholar 

  38. de Souza J, Benet LZ, Huang Y, Storpirtis S. Comparison of bidirectional lamivudine and zidovudine transport using MDCK, MDCK-MDR1, and Caco-2 cell monolayers. J Pharm Sci. 2009;98:4413–9. doi:10.1002/jps.21744.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang P, de Gooijer MC, Buil LC, Beijnen JH, Li G, van Tellingen O. ABCB1 and ABCG2 restrict the brain penetration of a panel of novel EZH2-inhibitors. Int J Cancer. 2007;137:2007–18. doi:10.1002/ijc.29566.

    Article  CAS  Google Scholar 

  40. An G, Gallegos J, Morris ME. The bioflavonoid kaempferol is an Abcg2 substrate and inhibits Abcg2-mediated quercetin efflux. Drug Metab Dispos. 2011;39:426–32. doi:10.1124/dmd.110.035212.

    Article  CAS  PubMed  Google Scholar 

  41. Sugano T, Seike M, Noro R, Soeno C, Chiba M, Zou F, Nakamichi S, Nishijima N, Matsumoto M, Miyanaga A, Kubota K, Gemma A. Inhibition of ABCB1 overcomes cancer stem cell-like properties and acquired resistance to MET inhibitors in non-small cell lung cancer. Mol Cancer Ther. 2015;14:2433–40. doi:10.1158/1535-7163.MCT-15-0050.

    Article  CAS  PubMed  Google Scholar 

  42. Schrickx J, Lektarau Y, Fink-Gremmels J. Ochratoxin A secretion by ATP-dependent membrane transporters in Caco-2 cells. Arch Toxicol. 2006;80:243–9. doi:10.1007/s00204-005-0041-5.

    Article  CAS  PubMed  Google Scholar 

  43. Schrickx JA, Fink-Gremmels J. Danofloxacin-mesylate is a substrate for ATP-dependent efflux transporters. Br J Pharmacol. 2007;150:463–9. doi:10.1038/sj.bjp.0706974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miller DW, Hinton M, Chen F. Evaluation of drug efflux transporter liabilities of darifenacin in cell culture models of the blood-brain and blood-ocular barriers. Neurourol Urodyn. 2011;30:1633–8. doi:10.1002/nau.21110.

    Article  PubMed  CAS  Google Scholar 

  45. Lumen AA, Li L, Li J, Ahmed Z, Meng Z, Owen A, Ellens H, Hidalgo IJ, Bentz J. Transport inhibition of digoxin using several common Pgp expressing cell lines is not necessarily reporting only on inhibitor binding to Pgp. PLoS One. 2013;8:e69394. doi:10.1371/journal.pone.0069394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Planting AS, Sonneveld P, van der Gaast A, Sparreboom A, van der Burg ME, Luyten GP, de Leeuw K, de Boer-Dennert M, Wissel PS, Jewell RC, Paul EM, Purvis NB Jr, Verweij J. A phase I and pharmacologic study of the MDR converter GF120918 in combination with doxorubicin in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2005;55:91–9. doi:10.1007/s00280-004-0854-6.

    Article  CAS  PubMed  Google Scholar 

  47. Lu Y, Slizgi JR, Brouwer KR, Claire RL, Freeman KM, Pan M, Brock WJ, Brouwer KL. Hepatocellular disposition and transporter interactions with tolvaptan and metabolites in sandwich-cultured human hepatocytes. Drug Metab Dispos. 2016;. doi:10.1124/dmd.115.067629.

    Google Scholar 

  48. Nekhayeva IA, Nanovskaya TN, Hankins GD, Ahmed MS. Role of human placental efflux transporter P-glycoprotein in the transfer of buprenorphine, levo-alpha-acetylmethadol, and paclitaxel. Am J Perinatol. 2006;23:423–30. doi:10.1055/s-2006-951301.

    Article  PubMed  Google Scholar 

  49. Yao HM, Chiou WL. The complexity of intestinal absorption and exsorption of digoxin in rats. Int J Pharm. 2006;322:79–86. doi:10.1016/j.ijpharm.2006.05.030.

    Article  CAS  PubMed  Google Scholar 

  50. Ward KW, Azzarano LM. Preclinical pharmacokinetic properties of the P-glycoprotein inhibitor GF120918A (HCl salt of GF120918, 9,10-dihydro-5-methoxy-9-oxo-N-[4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]phenyl]-4-acridine-carboxamide) in the mouse, rat, dog, and monkey. J Pharmacol Exp Ther. 2004;310:703–9. doi:10.1124/jpet.104.068288.

    Article  CAS  PubMed  Google Scholar 

  51. Sane R, Agarwal S, Elmquist WF. Brain distribution and bioavailability of elacridar after different routes of administration in the mouse. Drug Metab Dispos. 2012;40:1612–9. doi:10.1124/dmd.112.045930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sane R, Agarwal S, Mittapalli RK, Elmquist WF. Saturable active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier leads to nonlinear distribution of elacridar to the central nervous system. J Pharmacol Exp Ther. 2013;345:111–24. doi:10.1124/jpet.112.199786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kuppens IE, Witteveen EO, Jewell RC, Radema SA, Paul EM, Mangum SG, Beijnen JH, Voest EE, Schellens JH. A phase I, randomized, open-label, parallel-cohort, dose-finding study of elacridar (GF120918) and oral topotecan in cancer patients. Clin Cancer Res. 2007;13:3276–85. doi:10.1158/1078-0432.CCR-06-2414.

    Article  CAS  PubMed  Google Scholar 

  54. Tang SC, Kort A, Cheung KL, Rosing H, Fukami T, Durmus S, Wagenaar E, Hendrikx JJ, Nakajima M, van Vlijmen BJ, Beijnen JH, Schinkel AH. P-glycoprotein, CYP3A, and plasma carboxylesterase determine brain disposition and oral availability of the novel taxane cabazitaxel (Jevtana) in mice. Mol Pharm. 2015;12:3714–23. doi:10.1021/acs.molpharmaceut.5b00470.

    Article  CAS  PubMed  Google Scholar 

  55. Lin F, Marchetti S, Pluim D, Iusuf D, Mazzanti R, Schellens JH, Beijnen JH, van Tellingen O. Abcc4 together with abcb1 and abcg2 form a robust cooperative drug efflux system that restricts the brain entry of camptothecin analogues. Clin Cancer Res. 2013;19:2084–95. doi:10.1158/1078-0432.CCR-12-3105.

    Article  CAS  PubMed  Google Scholar 

  56. Adane ED, Liu Z, Xiang TX, Anderson BD, Leggas M. Pharmacokinetic modeling to assess factors affecting the oral bioavailability of the lactone and carboxylate forms of the lipophilic camptothecin analogue AR-67 in rats. Pharm Res. 2012;29:1722–36. doi:10.1007/s11095-011-0617-0.

    Article  CAS  PubMed  Google Scholar 

  57. de Vries NA, Zhao J, Kroon E, Buckle T, Beijnen JH, van Tellingen O. P-glycoprotein and breast cancer resistance protein: two dominant transporters working together in limiting the brain penetration of topotecan. Clin Cancer Res. 2007;13:6440–9. doi:10.1158/1078-0432.CCR-07-1335.

    Article  PubMed  CAS  Google Scholar 

  58. Jonker JW, Smit JW, Brinkhuis RF, Maliepaard M, Beijnen JH, Schellens JH, Schinkel AH. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst. 2000;92:1651–6. doi:10.1093/jnci/92.20.1651.

    Article  CAS  PubMed  Google Scholar 

  59. Yamasaki T, Fujinaga M, Kawamura K, Hatori A, Yui J, Nengaki N, Ogawa M, Yoshida Y, Wakizaka H, Yanamoto K, Fukumura T, Zhang MR. Evaluation of the P-glycoprotein- and breast cancer resistance protein-mediated brain penetration of 11C-labeled topotecan using small-animal positron emission tomography. Nucl Med Biol. 2011;38:707–14. doi:10.1016/j.nucmedbio.2010.12.012.

    Article  CAS  PubMed  Google Scholar 

  60. Kemper EM, Verheij M, Boogerd W, Beijnen JH, van Tellingen O. Improved penetration of docetaxel into the brain by co-administration of inhibitors of P-glycoprotein. Eur J Cancer. 2004;40:1269–74. doi:10.1016/j.ejca.2004.01.024.

    Article  CAS  PubMed  Google Scholar 

  61. Bardelmeijer HA, Ouwehand M, Beijnen JH, Schellens JH, van Tellingen O. Efficacy of novel P-glycoprotein inhibitors to increase the oral uptake of paclitaxel in mice. Invest New Drug. 2004;22:219–29. doi:10.1023/B:DRUG.0000026248.45084.21.

    Article  CAS  Google Scholar 

  62. Kemper EM, van Zandbergen AE, Cleypool C, Mos HA, Boogerd W, Beijnen JH, van Tellingen O. Increased penetration of paclitaxel into the brain by inhibition of P-glycoprotein. Clin Cancer Res. 2003;9:2849–55.

    CAS  PubMed  Google Scholar 

  63. Hendrikx JJ, Lagas JS, Wagenaar E, Rosing H, Schellens JH, Beijnen JH, Schinkel AH. Oral co-administration of elacridar and ritonavir enhances plasma levels of oral paclitaxel and docetaxel without affecting relative brain accumulation. Br J Cancer. 2014;110:2669–76. doi:10.1038/bjc.2014.222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Minocha M, Khurana V, Qin B, Pal D, Mitra AK. Enhanced brain accumulation of pazopanib by modulating P-gp and Bcrp1 mediated efflux with canertinib or erlotinib. Int J Pharm. 2012;436:127–34. doi:10.1016/j.ijpharm.2012.05.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Choo EF, Ly J, Chan J, Shahidi-Latham SK, Messick K, Plise EQuiason CM, Yang L. Role of P-glycoprotein on the brain penetration and brain pharmacodynamic activity of the MEK inhibitor cobimetinib. Mol Pharm. 2014;11:4199–207. doi:10.1021/mp500435s.

    Article  CAS  PubMed  Google Scholar 

  66. Tang SC, Nguyen LN, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Increased oral availability and brain accumulation of the ALK inhibitor crizotinib by coadministration of the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Int J Cancer. 2014;134:1484–94. doi:10.1002/ijc.28475.

    Article  PubMed  CAS  Google Scholar 

  67. Chen Y, Agarwal S, Shaik NM, Chen C, Yang Z, Elmquist WF. P-glycoprotein and breast cancer resistance protein influence brain distribution of dasatinib. J Pharmacol Exp Ther. 2009;330:956–63. doi:10.1124/jpet.109.154781.

    Article  CAS  PubMed  Google Scholar 

  68. Lagas JS, van Waterschoot RA, van Tilburg VA, Hillebrand MJ, Lankheet N, Rosing H, Beijnen JH, Schinkel AH. Brain accumulation of dasatinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by elacridar treatment. Clin Cancer Res. 2009;15:2344–51. doi:10.1158/1078-0432.CCR-08-2253.

    Article  CAS  PubMed  Google Scholar 

  69. Mittapalli RK, Chung AH, Parrish KE, Crabtree D, Halvorson KG, Hu G, Elmquist WF, Becher OJ. ABCG2 and ABCB1 limit the efficacy of dasatinib in a PDGF-B-driven brainstem glioma model. Mol Cancer Ther. 2016;15:819–29. doi:10.1158/1535-7163.MCT-15-0093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Agarwal S, Manchanda P, Vogelbaum MA, Ohlfest JR, Elmquist WF. Function of the blood-brain barrier and restriction of drug delivery to invasive glioma cells: findings in an orthotopic rat xenograft model of glioma. Drug Metab Dispos. 2013;41:33–9. doi:10.1124/dmd.112.048322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Traxl A, Wanek T, Mairinger S, Stanek J, Filip T, Sauberer M, Müller M, Kuntner C, Langer O. Breast cancer resistance protein and P-glycoprotein influence in vivo disposition of 11C-erlotinib. J Nucl Med. 2015;56:1930–6. doi:10.2967/jnumed.115.161273.

    Article  CAS  PubMed  Google Scholar 

  72. Agarwal S, Sane R, Gallardo JL, Ohlfest JR, Elmquist WF. Distribution of gefitinib to the brain is limited by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)-mediated active efflux. J Pharmacol Exp Ther. 2010;334:147–55. doi:10.1124/jpet.110.167601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kawamura K, Yamasaki T, Yui J, Hatori A, Konno F, Kumata K, Irie T, Fukumura T, Suzuki K, Kanno I, Zhang MR. In vivo evaluation of P-glycoprotein and breast cancer resistance protein modulation in the brain using [(11)C]gefitinib. Nucl Med Biol. 2009;36:239–46. doi:10.1016/j.nucmedbio.2008.12.006.

    Article  CAS  PubMed  Google Scholar 

  74. Bihorel S, Camenisch G, Lemaire M, Scherrmann JM. Influence of breast cancer resistance protein (Abcg2) and P-glycoprotein (Abcb1a) on the transport of imatinib mesylate (Gleevec) across the mouse blood-brain barrier. J Neurochem. 2007;102:1749–57. doi:10.1111/j.1471-4159.2007.04808.x.

    Article  CAS  PubMed  Google Scholar 

  75. Breedveld P, Pluim D, Cipriani G, Wielinga P, van Tellingen O, Schinkel AH, Schellens JH. The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res. 2005;65:2577–82. doi:10.1158/0008-5472.CAN-04-2416.

    Article  CAS  PubMed  Google Scholar 

  76. Bihorel S, Camenisch G, Lemaire M, Scherrmann JM. Modulation of the brain distribution of imatinib and its metabolites in mice by valspodar, zosuquidar and elacridar. Pharm Res. 2007;24:1720–8. doi:10.1007/s11095-007-9278-4.

    Article  CAS  PubMed  Google Scholar 

  77. Oostendorp RL, Buckle T, Beijnen JH, van Tellingen O, Schellens JH. The effect of Pgp (Mdr1a/1b), BCRP (Bcrp1) and Pgp/BCRP inhibitors on the in vivo absorption, distribution, metabolism and excretion of imatinib. Invest New Drugs. 2009;27:31–40. doi:10.1007/s10637-008-9138-z.

    Article  CAS  PubMed  Google Scholar 

  78. Tang SC, Lagas JS, Lankheet NA, Poller B, Hillebrand MJ, Rosing H, Beijnen JH, Schinkel AH. Brain accumulation of sunitinib is restricted by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and can be enhanced by oral elacridar and sunitinib co-administration. Int J Cancer. 2012;130:223–33. doi:10.1002/ijc.26000.

    Article  CAS  PubMed  Google Scholar 

  79. Tang SC, Lankheet NA, Poller B, Wagenaar E, Beijnen JH, Schinkel AH. P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) restrict brain accumulation of the active sunitinib metabolite N-desethyl sunitinib. J Pharmacol Exp Ther. 2012;341:164–73. doi:10.1124/jpet.111.186908.

    Article  CAS  PubMed  Google Scholar 

  80. Oberoi RK, Mittapalli RK, Elmquist WF. Pharmacokinetic assessment of efflux transport in sunitinib distribution to the brain. J Pharmacol Exp Ther. 2013;347:755–64. doi:10.1124/jpet.113.208959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Parrish KE, Pokorny J, Mittapalli RK, Bakken K, Sarkaria JN, Elmquist WF. Efflux transporters at the blood-brain barrier limit delivery and efficacy of cyclin-dependent kinase 4/6 inhibitor palbociclib (PD-0332991) in an orthotopic brain tumor model. J Pharmacol Exp Ther. 2015;355:264–71. doi:10.1124/jpet.115.228213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lagas JS, van Waterschoot RA, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol Cancer Ther. 2010;9:319–26. doi:10.1158/1535-7163.MCT-09-066.

    Article  CAS  PubMed  Google Scholar 

  83. Agarwal S, Sane R, Ohlfest JR, Elmquist WF. The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib to the brain. J Pharmacol Exp Ther. 2011;336:223–33. doi:10.1124/jpet.110.175034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Minocha M, Khurana V, Qin B, Pal D, Mitra AK. Co-administration strategy to enhance brain accumulation of vandetanib by modulating P-glycoprotein (Pgp/Abcb1) and breast cancer resistance protein (Bcrp1/Abcg2) mediated efflux with m-TOR inhibitors. Int J Pharm. 2012;434:306–14. doi:10.1016/j.ijpharm.2012.05.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Durmus S, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Oral availability and brain penetration of the B-RAFV600E inhibitor vemurafenib can be enhanced by the P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) inhibitor elacridar. Mol Pharm. 2012;9:3236–45. doi:10.1021/mp3003144.

    Article  CAS  PubMed  Google Scholar 

  86. Edwards JE, Brouwer KR, McNamara PJ. GF120918, a P-glycoprotein modulator, increases the concentration of unbound amprenavir in the central nervous system in rats. Antimicrob Agents Chemother. 2002;46:2284–6. doi:10.1128/AAC.46.7.2284-2286.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Savolainen J, Edwards JE, Morgan ME, McNamara PJ, Anderson BD. Effects of a P-glycoprotein inhibitor on brain and plasma concentrations of anti-human immunodeficiency virus drugs administered in combination in rats. Drug Metab Dispos. 2002;30:479–82. doi:10.1124/dmd.30.5.479.

    Article  CAS  PubMed  Google Scholar 

  88. Robillard KR, Chan GN, Zhang G, la Porte C, Cameron W, Bendayan R. Role of P-glycoprotein in the distribution of the HIV protease inhibitor atazanavir in the brain and male genital tract. Antimicrob Agents Chemother. 2014;58:1713–22. doi:10.1128/AAC.02031-13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Huisman MT, Smit JW, Wiltshire HR, Beijnen JH, Schinkel AH. Assessing safety and efficacy of directed P-glycoprotein inhibition to improve the pharmacokinetic properties of saquinavir coadministered with ritonavir. J Pharmacol Exp Ther. 2003;304:596–602. doi:10.1124/jpet.102.044388.

    Article  CAS  PubMed  Google Scholar 

  90. Shi J, Cao B, Zha WB, Wu XL, Liu LS, Xiao WJ, Gu RR, Sun RB, Yu XY, Zheng T, Li MJ, Wang XW, Zhou J, Mao Y, Ge C, Ma T, Xia WJ, Aa JY, Wang GJ, Liu CX. Pharmacokinetic interactions between 20(S)-ginsenoside Rh2 and the HIV protease inhibitor ritonavir in vitro and in vivo. Acta Pharmacol Sin. 2013;34:1349–58. doi:10.1038/aps.2013.69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gozalpour E, Greupink R, Bilos A, Verweij V, van den Heuvel JJ, Masereeuw R, Russel FG, Koenderink JB. Convallatoxin: a new P-glycoprotein substrate. Eur J Pharmacol. 2014;744:18–27. doi:10.1016/j.ejphar.2014.09.031.

    Article  CAS  PubMed  Google Scholar 

  92. Vaidhyanathan S, Wilken-Resman B, Ma DJ, Parrish KE, Mittapalli RK, Carlson BL, Sarkaria JN, Elmquist WF. Factors influencing the central nervous system distribution of a novel Phosphoinositide 3-Kinase/mammalian target of rapamycin inhibitor GSK2126458: implications for overcoming resistance with combination therapy for melanoma brain metastases. J Pharmacol Exp Ther. 2016;356:251–9. doi:10.1124/jpet.115.229393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Polli JW, Baughman TM, Humphreys JE, Jordan KH, Mote AL, Webster LO, Barnaby RJ, Vitulli G, Bertolotti L, Read KD, Serabjit-Singh CJ. The systemic exposure of an N-methyl-D-aspartate receptor antagonist is limited in mice by the P-glycoprotein and breast cancer resistance protein efflux transporters. Drug Metab Dispos. 2004;32:722–6. doi:10.1124/dmd.32.7.722.

    Article  CAS  PubMed  Google Scholar 

  94. Liu F, Wang X, Li Z, Li J, Zhuang X, Zhang Z. P-glycoprotein (ABCB1) limits the brain distribution of YQA-14, a novel dopamine D3 receptor antagonist. Chem Pharm Bull (Tokyo). 2015;63:512–8. doi:10.1248/cpb.c15-00089.

    Article  Google Scholar 

  95. Zamek-Gliszczynski MJ, Hoffmaster KA, Tian X, Zhao R, Polli JW, Humphreys JE, Webster LO, Bridges AS, Kalvass JC, Brouwer KL. Multiple mechanisms are involved in the biliary excretion of acetaminophen sulfate in the rat: role of Mrp2 and Bcrp1. Drug Metab Dispos. 2005;33:1158–65. doi:10.1124/dmd.104.002188.

    Article  CAS  PubMed  Google Scholar 

  96. Lee YJ, Kusuhara H, Jonker JW, Schinkel AH, Sugiyama Y. Investigation of efflux transport of dehydroepiandrosterone sulfate and mitoxantrone at the mouse blood-brain barrier: a minor role of breast cancer resistance protein. J Pharmacol Exp Ther. 2005;312:44–52. doi:10.1124/jpet.104.073320.

    Article  CAS  PubMed  Google Scholar 

  97. Kallem R, Kulkarni CP, Patel D, Thakur M, Sinz M, Singh SP, Mahammad SS, Mandlekar S. A simplified protocol employing elacridar in rodents: a screening model in drug discovery to assess Pgp mediated efflux at the blood brain barrier. Drug Metab Lett. 2012;6:134–44. doi:10.2174/1872312811206020134.

    Article  CAS  PubMed  Google Scholar 

  98. Imbert F, Jardin M, Fernandez C, Gantier JC, Dromer F, Baron G, Mentre F, Van Beijsterveldt L, Singlas E, Gimenez F. Effect of efflux inhibition on brain uptake of itraconazole in mice infected with Cryptococcus neoformans. Drug Metab Dispos. 2003;31:319–25. doi:10.1124/dmd.31.3.319.

    Article  CAS  PubMed  Google Scholar 

  99. Montesinos RN, Moulari B, Gromand J, Beduneau A, Lamprecht A, Pellequer Y. Co-administration of P-glycoprotein modulators on loperamide pharmacokinetics and brain distribution. Drug Metab Dispos. 2014;42:700–6. doi:10.1124/dmd.113.055566.

    Article  PubMed  CAS  Google Scholar 

  100. de Barraud Lagerie S, Comets E, Gautrand C, Fernandez C, Auchere D, Singlas E, Mentre F, Gimenez F. Cerebral uptake of mefloquine enantiomers with and without the Pgp inhibitor elacridar (GF1210918) in mice. Br J Pharmacol. 2004;141:1214–22. doi:10.1038/sj.bjp.0705721.

    Article  CAS  Google Scholar 

  101. Mariappan TT, Kurawattimath V, Gautam SS, Kulkarni CP, Kallem R, Taskar KS, Marathe PH, Mandlekar S. Estimation of the unbound brain concentration of P-glycoprotein substrates or nonsubstrates by a serial cerebrospinal fluid sampling technique in rats. Mol Pharm. 2014;11:477–85. doi:10.1021/mp400436d.

    Article  CAS  PubMed  Google Scholar 

  102. Letrent SP, Pollack GM, Brouwer KR, Brouwer KL. Effects of a potent and specific P-glycoprotein inhibitor on the blood-brain barrier distribution and antinociceptive effect of morphine in the rat. Drug Metab Dispos. 1999;27:827–34.

    CAS  PubMed  Google Scholar 

  103. Jablonski MR, Markandaiah SS, Jacob D, Meng NJ, Li K, Gennaro V, Lepore AC, Trotti D, Pasinelli P. Inhibiting drug efflux transporters improves efficacy of ALS therapeutics. Ann Clin Transl Neurol. 2014;1:996–1005. doi:10.1002/acn3.141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kuntner C, Bankstahl JP, Bankstahl M, Stanek J, Wanek T, Stundner G, Karch R, Brauner R, Meier M, Ding X, Müller M, Löscher W, Langer O. Dose-response assessment of tariquidar and elacridar and regional quantification of P-glycoprotein inhibition at the rat blood-brain barrier using (R)-[(11)C]verapamil PET. Eur J Nucl Med Mol Imaging. 2010;37:942–53. doi:10.1007/s00259-009-1332-5.

    Article  CAS  PubMed  Google Scholar 

  105. Sparreboom A, Planting AS, Jewell RC, van der Burg ME, van der Gaast A, de Bruijn P, Loos WJ, Nooter K, Chandler LH, Paul EM, Wissel PS, Verweij J. Clinical pharmacokinetics of doxorubicin in combination with GF120918, a potent inhibitor of MDR1 P-glycoprotein. Anticancer Drugs. 1999;10:719–28.

    Article  CAS  PubMed  Google Scholar 

  106. Malingré MM, Beijnen JH, Rosing H, Koopman FJ, Jewell RC, Paul EM, Ten Bokkel Huinink WW, Schellens JH. Co-administration of GF120918 significantly increases the systemic exposure to oral paclitaxel in cancer patients. Br J Cancer. 2001;84:42–7. doi:10.1054/bjoc.2000.1543.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Cripe LD, Uno H, Paietta EM, Litzow MR, Ketterling RP, Bennett JM, Rowe JM, Lazarus HM, Luger S, Tallman MS. Zosuquidar, a novel modulator of P-glycoprotein, does not improve the outcome of older patients with newly diagnosed acute myeloid leukemia: a randomized, placebo-controlled trial of the Eastern Cooperative Oncology Group 3999. Blood. 2010;116:4077–85. doi:10.1182/blood-2010-04-277269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mandery K, Glaeser H, Fromm MF. Interaction of innovative small molecule drugs used for cancer therapy with drug transporters. Br J Pharmacol. 2012;165:345–62. doi:10.1111/j.1476-5381.2011.01618.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. O’Brien FE, O’Connor RM, Clarke G, Dinan TG, Griffin BT, Cryan JF. P-glycoprotein inhibition increases the brain distribution and antidepressant-like activity of escitalopram in rodents. Neuropsychopharmacology. 2013;38:2209–19. doi:10.1038/npp.2013.120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Bauer M, Blaickner M, Philippe C, Wadsak W, Hacker M, Zeitlinger M, Langer O. Whole-body distribution and radiation dosimetry of 11C-elacridar and 11C-tariquidar in humans. J Nucl Med. 2016;57:1265–8. doi:10.2967/jnumed.116.175182.

    Article  CAS  PubMed  Google Scholar 

  111. https://clinicaltrials.gov./ct2/show/record/NCT00048633?term=tariquidar&rank=8. Accessed on 18 Dec 2017.

  112. https://clinicaltrials.gov./ct2/show/record/NCT00046930?term=zosuquidar&rank=2. Accessed on 18 Dec 2017

  113. https://clinicaltrials.gov./ct2/show/record/NCT00028873?term=laniquidar&rank=1. Accessed on 18 Dec 2017.

  114. Bauer M, Zeitlinger M, Todorut D, Böhmdorfer M, Müller M, Langer O, Jäger W. Pharmacokinetics of single ascending doses of the P-glycoprotein inhibitor tariquidar in healthy subjects. Pharmacology. 2013;91:12–9. doi:10.1159/000343243.

    Article  CAS  PubMed  Google Scholar 

  115. van Zuylen L, Sparreboom A, van der Gaast A, van der Burg ME, van Beurden V, Bol CJ, Woestenborghs R, Palmer PA, Verweij J. The orally administered P-glycoprotein inhibitor R101933 does not alter the plasma pharmacokinetics of docetaxel. Clin Cancer Res. 2000;6:1365–71.

    PubMed  Google Scholar 

  116. Chi KN, Chia SK, Dixon R, Newman MJ, Wacher VJ, Sikic B, Gelmon KA. A phase I pharmacokinetic study of the P-glycoprotein inhibitor, ONT-093, in combination with paclitaxel in patients with advanced cancer. Invest New Drugs. 2005;23:311–5. doi:10.1007/s10637-005-1439-x.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuggehally R. Srinivas.

Ethics declarations

Funding

No funding was received for preparation of this manuscript.

Conflicts of interest

Ranjeet Prasad Dash, R. Jayachandra Babu and Nuggehally R Srinivas have no conflicts of interest or competing interests relevant to the contents of the review article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, R.P., Jayachandra Babu, R. & Srinivas, N.R. Therapeutic Potential and Utility of Elacridar with Respect to P-glycoprotein Inhibition: An Insight from the Published In Vitro, Preclinical and Clinical Studies. Eur J Drug Metab Pharmacokinet 42, 915–933 (2017). https://doi.org/10.1007/s13318-017-0411-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13318-017-0411-4

Keywords

Navigation