Skip to main content
Log in

Quantification of the environmental effect on citrus canker intensity at increasing distances from a natural windbreak in northeastern Argentina

  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Citrus canker, caused by the bacterium Xanthomonas citri pv. citri (Xcc), is an endemic quarantine disease in northeastern Argentina. The objective of this study was to quantify the effect of weather variables on mid-season fruit canker intensity in an experimental grove of the “Red Blush” grapefruit cultivar in Bella Vista, Corrientes Province (Argentina), at two contrasting distances from a natural windbreak (closer, wd = 0; farther, wd = 1). For the 1991–2010 growing seasons, disease observations were analyzed at both windbreak distances. The variable that best correlated with the disease levels (S: severe, M: moderate and L: light) at both windbreak distances was DPrecWsBl (days with precipitation > 12 mm and wind speed > 2.6 km.h−1; Kendall Tau-b coefficient (rk) = 0.71), different from the rk = 0.60 obtained with DPrec (days with precipitation > 12 mm). Daily wind speed values at both windbreak distances were estimated from wind speeds recorded at Bella Vista meteorological station after fitting linear regression equations. The best ordinal response logistic regression models included DPrecWsBl and DT (days with temperatures in the interval 17–27 °C), and DPrec, DDMaxT (sum of the exceeding amounts of daily maximum temperature from 33 ºC) and windbreak distance (wd) coded as strong (wd = 0) and moderate (wd = 1) wind protection (prediction accuracy = 90 and 88.6 % respectively). Both models classified the nine observations with a severe canker intensity level correctly and their respective precipitation-driven predictors (DPrecWsBl and DPrec) achieved a highly satisfactory separation of two observed canker levels (S and M-L). The results may allow us to release canker risk warnings for scenarios with strong (wd = 0) and moderate (wd = 1) wind protection. These warnings may assist producers to make bactericide spray applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bock CH, Parker PE, Gottwald TR (2005) The effect of simulated wind-driven rain on duration and distance of dispersal of Xanthomonas axonopodis pv. citri from canker infected citrus trees. Plant Dis 89:71–80

    Article  Google Scholar 

  • Bock CH, Parker PE, Cook AZ, Gottwald TR (2006) Factor affecting infection of citrus with Xanthomonas axonopodis pv citri (Abstr.) Phytopathology, vo. 96, S14

  • Bock CH, Graham JH, Gottwald TR, Cook AZ, Parker PE (2010a) Wind speed effects on the quantity of Xanthomonas citri subsp. citri dispersed downwind from canopies of grapefruit trees infected with citrus canker. Plant Dis 94:725–736

    Article  Google Scholar 

  • Bock CH, Graham JH, Gottwald TR, Cook AZ, Parker PE (2010b) Wind speed and wind-associated leaf injury affect severity of citrus canker on Swingle citrumelo. Eur J Plant Pathol 128:21–38

    Article  Google Scholar 

  • Bock CH, Cook AZ, Parker PE, Gottwald TR, Graham JH (2012) Short-distance dispersal of splashed bacteria of Xanthomonas citri subsp. citri from canker-infected grapefruit tree canopies in turbulent wind. Plant Pathol 61:829–836

    Article  Google Scholar 

  • Canteros BI (1998) Ecology of endemic citrus canker: seasonal fluctuations of disease intensity. Abstract 3.7.41. 7th Int. Cong. Plant Pathol. Edinburgh. Scotland, vo. 3

  • Canteros BI (1999) Enfermedades: cancrosis. Black Spot y Sarna. Curso de Actualización en Sanidad Citrícola, EEA INTA Bella Vista, Argentina

    Google Scholar 

  • Canteros BI (2006) Management of citrus Canker in Argentina: a review. Proc. Int. Soc. of Citricultura, pp 515–523

  • Canteros BI (2009) Guía para la Identificación y el Manejo de las Enfermedades Fúngicas y Bacterianas en Citrus 2009–2010. Programa de Fortalecimiento de la Citricultura Correntina (INTA. CFI. Pcia Corrientes. SENASA. Corp. Mercado Central Bs As). 1a edición

  • Christiano RCS, Dalla Pria M, Jesus Junior WC, Amorim L, Bergamin Filho A (2009) Modelling the progress of Asiatic citrus canker on Tahiti lime in relation to temperature and leaf wetness. Eur J Plant Pathol 124:1–7

    Article  Google Scholar 

  • Dalla Pria M, Christiano RCS, Furtado EL, Amorim L, Bergamin Filho A (2006) Effect of temperature and leaf wetness duration on infection of sweet oranges by Asiatic citrus canker. Plant Pathol 55:657–663

    Article  Google Scholar 

  • Davies FS, Albrigo LG (1994) Citrus. Crop production science in horticulture, vo. 2. CAB Intl, Wallingford

    Google Scholar 

  • de Canteros Echenique BI, Zagory D, Stall RE (1985) A medium for cultivation of the B-strain of Xanthomonas campestris pv. citri. cause of cancrosis B in Argentina and Uruguay. Plant Dis 69:122–123

    Article  Google Scholar 

  • Gottwald TR, Graham JH (1992) A device for precise and nondisruptive stomatal inoculation of leaf tissue with bacterial pathogens. Phytopathology 82:930–935

    Article  Google Scholar 

  • Gottwald TR, Irey M (2007) Post-hurricane analysis of citrus canker II: predictive model estimation of disease spread and area potentially impacted by various eradication protocols following catasthophic weather events. Plant Health Prog. doi:10.1094/PHP-2007-0405-01-RS

    Google Scholar 

  • Gottwald TR, Timmer LW (1995) The efficacy of windbreaks in reducing the spread of citrus canker caused by Xanthomonas campestris pv. citri. Trop Agric, (Trinidad) 72:194–201

    Google Scholar 

  • Gottwald TR, Graham JH, Bock C, Bonn G, Civerolo E, Irey M, Leite R, McCollum G, Parker P, Ramallo J, Rilley T, Schubert T, Stein B, Taylor E (2009) The epidemiological significance of post-packinghouse survival of Xanthomonas citri subsp. citri for dissemination of Asiatic citrus canker via infected fruit. Crop Prot 28:508–524

    Article  Google Scholar 

  • Graham JH, McGuire RG, Miller JW (1987) Survival of Xanthomonas campestris pv. citri in citrus plant debris and soil in Florida and Argentina. Plant Dis 71:1094–1098

    Article  Google Scholar 

  • Henderson D, Williams CJ, Miller JS (2007) Forecasting late blight in potato crops of southern Idaho using logistic regression analysis. Plant Dis 91:951–956

    Article  Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression, 2nd edn. Willey, New York

    Book  Google Scholar 

  • Moschini RC, Canteros BI, Martínez MI (2005) Ecuaciones Predictivas de la Intensidad de la Cancrosis de los Cítrus en base a Variables Meteorológicas. Abstract V Cong. Argentino de Citricultura, Concordia, Argentina, pp. 24

  • Moschini RC, Sisterna MN, Carmona M (2006) Modelling of wheat black point incidence based on meteorological variables in the southern Argentinean Pampas Region. Aust J Agric Res 57:1151–1156

    Article  Google Scholar 

  • Moschini RC, Canteros BI, Marcó GM, Cazenave G (2010) Modelos logísticos predictivos de la cancrosis de los cítricos en Bella Vista y su uso en el área citrícola española. Abstract VI Cong. Argentino de Citricultura, Tucumán. Argentina, 0033-PV, pp. 79

  • Paul PA, Munkvold GP (2004) A model-based approach to preplanting risk assessment for gray leaf spot of maize. Phytopathology 94:1350–1357

    Article  CAS  PubMed  Google Scholar 

  • Pruvost O, Boher B, Brocherieux C, Nicole M, Chiroleu F (2002) Survival of Xanthomonas axonopodis pv. citri in leaf lesions under tropical environmental conditions and simulated splash dispersal of inoculum. Phytopathology 92:336–346

    Article  CAS  PubMed  Google Scholar 

  • Serizawa S, Inoue K (1974) Studies on citrus canker, Xanthomonas citri. III. The influence of wind on the infection of citrus canker. Bull. Shizuoka Prefect. Citrus Exp. Stn. Komagoe Shimizu City, Japan, vo. 11, pp. 54–67

  • Stall RE, Marcó GM, Canteros BI (1982) Importance of mesophyll in mature-leaf resistance to cancrosis of citrus. Phytopathology 72:1097–1100

    Article  Google Scholar 

  • Stall RE, Gottwald TR, Koizumi M, Schaad NC (1993) Ecology of plant pathogenic Xanthomonads. In: Swing JG, Civerolo EL (eds) Xanthomonas. Chapman and Hall, London

    Google Scholar 

  • Vernière J, Gottwald TR, Pruvost O (2003) Disease development and symptom expression of Xanthomonas axonopodis pv. citri in various citrus plant tissues. Phytopathology 93:832–843

    Article  PubMed  Google Scholar 

  • Wischmeier WH, Smith DD (1958) Rainfall energy and its relationship to soil loss. Trans Am Geophys Union 39:285–291

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank many members of the EEA INTA Bella Vista. Mr J. Soliz, F. Hermosis and J. Benítez for participating in disease assessments. Mr A. Vallejos, V. Vallejos and H. Monzón for the installation and readings of Robinson anemometers. Mr J. Lugo and A. Almirón, responsible of the EEA INTA Bella Vista weather station

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Moschini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moschini, R.C., Canteros, B.I., Martínez, M.I. et al. Quantification of the environmental effect on citrus canker intensity at increasing distances from a natural windbreak in northeastern Argentina. Australasian Plant Pathol. 43, 653–662 (2014). https://doi.org/10.1007/s13313-014-0305-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-014-0305-8

Keywords

Navigation