Skip to main content
Log in

Pathogenicity and sporulation of Phytophthora pinifolia on Pinus radiata in Chile

  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Phytophthora pinifolia causes the needle and shoot disease of Pinus radiata known as Daño Foliar del Pino (DFP) in Chile. The first pathogenicity trials with this organism utilized mycelial plugs placed on stem wounds. These resulted in lesions in the tissue, but did not reproduce the resinous bands on the needles, which are the most characteristics symptoms of the disease under natural conditions. In this study, stem inoculations were repeated, but to complete Koch’s postulates fully, and to confirm that P. pinifolia causes the symptoms observed on naturally infected trees, zoospore/sporangial suspensions were used to inoculate pine foliage. This method produced the same symptoms observed on needles infected naturally. These results confirm that P. pinifolia is the causal agent of the Daño Foliar del Pino on P. radiata in Chile and successfully completed Koch’s postulates for the first time. Pathogenicity tests on different Pinus spp. and hybrids showed a wide range of responses to inoculation with P. pinifolia mycelial plugs, from highly susceptible to resistant. Monitoring of sporulation revealed that the sporangia commonly remain on the needles for extended periods of time and their frequency of occurrence and dispersal appear to increase during the rainy season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahumada R (2003) Pathogens in commercial Eucalyptus plantations in Chile, with special reference to Mycosphaerella and Botryosphaeria species. Pretoria, South Africa: University of Pretoria, M.Sc. thesis

  • Barnes I, Crous PW, Wingfield MJ, Wingfield BD (2004) Multigene phylogenies reveal that red band needle blight of Pinus is caused by two distinct species of Dothistroma, D. septosporum and D. pini. Stud Mycol 50:551–555

    Google Scholar 

  • Brasier CM, Beales PA, Kirk SA, Denman S, Rose J (2005) Phytophthora kernoviae sp. nov., an invasive pathogen causing bleeding stem lesions on forest trees and foliar necroses of ornamentals in the UK. Mycol Res 109:853–859

    Article  PubMed  Google Scholar 

  • Davidson JM, Werres S, Garbelotto M, Hansen EM, Rizzo DM (2003) Sudden oak death and associated diseases caused by Phytophthora ramorum. Plant Health Progress Online (http://www.plantmanagementnetwork.org/php)

  • Davidson JM, Wickland AC, Patterson HA, Falk KR, Rizzo DM (2005) Transmission of Phytophthora ramorum in mixed-evergreen forest in California. Phytopathology 95:587–596

    Article  PubMed  Google Scholar 

  • Durán A, Gryzenhout M, Slippers B, Ahumada R, Rotella A, Flores F, Wingfield BD, Wingfield MJ (2008) Phytophthora pinifolia sp. nov., associated with a serious needle disease of Pinus radiata in Chile. Plant Pathol 57:715–727

    Article  Google Scholar 

  • Durán A, Slippers B, Gryzenhout M, Ahumada R, Drenth A, Wingfield BD, Wingfield MJ (2009) DNA-based method for rapid identification of the pine pathogen, Phytophthora pinifolia. FEMS Microbiol Lett 298:99–104

    Article  PubMed  Google Scholar 

  • Durán A, Gryzenhout M, Drenth A, Slippers B, Ahumada R, Wingfield BD, Wingfield MJ (2010) AFLP analysis reveals a clonal population of Phytophthora pinifolia in Chile. Fungal Biol 114:746–752

    Article  PubMed  Google Scholar 

  • Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. APS Press, St. Paul

    Google Scholar 

  • Fry WE, Goodwin SB (1997) Re-emergence of potato and tomato late blight in the United States. Plant Dis 81:1349–1357

    Article  Google Scholar 

  • Garbelotto M, Davison JM, Ivors K, Maloney PE, Hüberli D, Koike ST, Rizzo DM (2003) Non-oak native plants are the main hosts for the sudden oak death pathogen in California. Calif Agric 57:18–23

    Article  Google Scholar 

  • Greslebin AG, Hansen EM (2010) Pathogenicity of Phytophthora austrocedrae on Austrocedrus chilensis and its relation with mal del ciprés in Patagonia. Plant Pathol 59:604–612

    Article  Google Scholar 

  • Greslebin AG, Hansen EM, Sutton W (2007) Phytophthora austrocedrae sp. nov., a new species associated with Austrocedrus chilensis mortality in Patagonia (Argentina). Mycol Res 111:308–316

    Article  PubMed  Google Scholar 

  • Hansen EM, Hamm PB (1996) Survival of Phytophthora lateralis in infected roots of slow growth on selective media and low Port-Orford-cedar. Plant Dis 80:1075–1078

    Article  Google Scholar 

  • Hansen EM, Reeser P, Davidson J, Garbelotto M, Ivors K, Douhan L, Rizzo D (2003) Phytophthora nemorosa, a new species causing cankers and leaf blight of forest trees in California and Oregon, U.S.A. Mycotaxon 88:129–138

    Google Scholar 

  • Hansen EM, Parke JL, Sutton W (2005) Susceptibility of Oregon forest trees and shrubs to Phytophthora ramorum: a comparison of artificial inoculation and natural infection. Plant Dis 89:63–70

    Article  Google Scholar 

  • Heidelberger P, Welch PD (1983) Simulation run length control in the presence of an initial transient. Oper Res 31:1109–1144

    Article  Google Scholar 

  • Hüberli D, Tommerup IC, Colquhoun IJ, Hardy G (2002) Evaluation of resistance to Phytophthora cinnamomi in seed-grown trees and clonal lines of Eucalyptus marginata inoculated in lateral branches and roots. Plant Pathol 51(4):435–442

    Article  Google Scholar 

  • Lanfranco D (2000) Manejo de plagas forestales en Chile: análisis de casos en Pinus radiata. Sér Téc IPEF 13:41–48

    Google Scholar 

  • Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS: a Bayesian modeling framework: concepts, structure, and extensibility. Stat Comput 10:325–337

    Article  Google Scholar 

  • Oh E, Hansen EM, Sniezko RA (2006) Port-Orford-cedar resistant to Phytophthora lateralis. For Pathol 36:385–394

    Article  Google Scholar 

  • Rizzo DM, Garbelotto M, Davidson JM, Slaughter GW, Koike T (2002) Phytophthora ramorum as the cause of extensive mortality of Quercus sp. and Lithocarpus densiflorus in California. Plant Dis 86:205–214

    Article  Google Scholar 

  • Rizzo DM, Garbelotto M, Hansen EM (2005) Phytophthora ramorum: integrative research and management of an emerging pathogen in California and Oregon forests. Annu Rev Phytopathol 43:309–345

    Article  PubMed  Google Scholar 

  • Stat Soft Inc (2004) STATISTICA (data analysis software system), version 6. Statsoft, Tulsa, OK, USA

    Google Scholar 

  • Tooley PW, Browning M (2009) Susceptibility to Phytophthora ramorum and inoculum production potential of some common Eastern forest understory plant species. Plant Dis 93:249–256

    Article  Google Scholar 

  • Toro J, Gessel SP (1999) Radiata pine plantations in Chile. New Forest 18:33–44

    Article  Google Scholar 

Download references

Acknowledgments

We thank Bioforest S.A. and Bosques Arauco, subsidiaries of Arauco Group for their financial and technical support. We also thank various colleagues including Mr Rolando Gómez, Mr Rafael Quezada, Mr Rodrigo Nova, Dr Alvaro Durán, Mrs Carolina Valiente and Mr Boris Palma for their commitment in the field and laboratory work together with the Lab workers. Mrs Marcela Millar and Mr Iván Appel to provide the Pinus species tested. Mr Eduardo Rodríguez and Dr Claudio Balocchi, for useful discussions that have assisted us in completing this study. We also thank Mrs Seonju Marincowitz from University of Pretoria and Mr Freddy Mora from Universidad de Concepción for their support and help with microscope measurements and statistical analyses, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Ahumada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahumada, R., Rotella, A., Slippers, B. et al. Pathogenicity and sporulation of Phytophthora pinifolia on Pinus radiata in Chile. Australasian Plant Pathol. 42, 413–420 (2013). https://doi.org/10.1007/s13313-013-0212-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13313-013-0212-4

Keywords

Navigation