Skip to main content
Log in

Epileptic Encephalopathies: New Genes and New Pathways

  • Review
  • Published:
Neurotherapeutics

Abstract

Epileptic encephalopathies represent a group of devastating epileptic disorders that occur early in life and are often characterized by pharmaco-resistant epilepsy, persistent severe electroencephalographic abnormalities, and cognitive dysfunction or decline. Next generation sequencing technologies have increased the speed of gene discovery tremendously. Whereas ion channel genes were long considered to be the only significant group of genes implicated in the genetic epilepsies, a growing number of non-ion-channel genes are now being identified. As a subgroup of the genetically mediated epilepsies, epileptic encephalopathies are complex and heterogeneous disorders, making diagnosis and treatment decisions difficult. Recent exome sequencing data suggest that mutations causing epileptic encephalopathies are often sporadic, typically resulting from de novo dominant mutations in a single autosomal gene, although inherited autosomal recessive and X-linked forms also exist.

In this review we provide a summary of the key features of several early- and mid-childhood onset epileptic encephalopathies including Ohtahara syndrome, Dravet syndrome, Infantile spasms and Lennox Gastaut syndrome. We review the recent next generation sequencing findings that may impact treatment choices. We also describe the use of conventional and newer anti-epileptic and hormonal medications in the various syndromes based on their genetic profile. At a biological level, developments in cellular reprogramming and genome editing represent a new direction in modeling these pediatric epilepsies and could be used in the development of novel and repurposed therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Engel J, Jr, International League Against Epilepsy (ILAE). A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia 2001;42:796–803.

    PubMed  Google Scholar 

  2. Corey LA, Berg K, Pellock JM, Solaas MH, Nance WE, DeLorenzo RJ. The occurrence of epilepsy and febrile seizures in Virginian and Norwegian twins. Neurology 1991;41:1433–1436.

    PubMed  CAS  Google Scholar 

  3. Inouye E. Observations on forty twin index cases with chronic epilepsy and their co-twins. J Nerv Ment Dis 1960;130:401-416.

    PubMed  CAS  Google Scholar 

  4. Scheffer IE. Epilepsy genetics revolutionizes clinical practice. Neuropediatrics 2014;45:70-74.

    PubMed  Google Scholar 

  5. Knezevic-Pogancev M. [Ohtahara syndrome—early infantile epileptic encephalopathy]. Med Pregl 2008;61:581-585 [in Serbian].

    PubMed  Google Scholar 

  6. Deprez L, Jansen A, De Jonghe P. Genetics of epilepsy syndromes starting in the first year of life. Neurology 2009;72:273-281.

    PubMed  Google Scholar 

  7. Kato M, Saitoh S, Kamei A, et al. A longer polyalanine expansion mutation in the ARX gene causes early infantile epileptic encephalopathy with suppression-burst pattern (Ohtahara syndrome). Am J Hum Genet 2007;81:361-366.

    PubMed  CAS  PubMed Central  Google Scholar 

  8. Saitsu H, Kato M, Mizuguchi T, et al. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet 2008;40:782-788.

    PubMed  CAS  Google Scholar 

  9. Kato M, Yamagata T, Kubota M, et al., Clinical spectrum of early onset epileptic encephalopathies caused by KCNQ2 mutation. Epilepsia 2013;54:1282-1287.

    PubMed  CAS  Google Scholar 

  10. Nakamura K, Kato M, Osaka H, et al. Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology 2013;81:992-998.

    PubMed  CAS  Google Scholar 

  11. Zerem A, Lev D, Blumkin L, et al. Paternal germline mosaicism of a SCN2A mutation results in Ohtahara syndrome in half siblings. Eur J Paediatr Neurol 2014 Apr 18.

  12. Rodgers WP, Durnford AJ, Kirkham FJ, Whitney A, Mullee MA, Gray WP. Interrater reliability of Engel, International League Against Epilepsy, and McHugh seizure outcome classifications following vagus nerve stimulator implantation. J Neurosurg Pediatr 2012;10:226-229.

    PubMed  Google Scholar 

  13. Yamatogi Y, Ohtahara S. Early-infantile epileptic encephalopathy with suppression-bursts, Ohtahara syndrome; its overview referring to our 16 cases. Brain Dev 2002;24:13-23.

    PubMed  Google Scholar 

  14. Auvin S, Lamblin MD, Pandit F, Vallée L, Bouvet-Mourcia A. Infantile epileptic encephalopathy with late-onset spasms: report of 19 patients. Epilepsia 2010;51:1290-1296.

    PubMed  Google Scholar 

  15. Blume WT, Lüders HO, Mizrahi E, Tassinari C, van Emde Boas W, Engel J Jr. Glossary of descriptive terminology for ictal semiology: report of the ILAE task force on classification and terminology. Epilepsia 2001;42:1212-1218.

    PubMed  CAS  Google Scholar 

  16. Anon. Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 1989;30:389-399.

  17. Saemundsen E, Ludvigsson P, Rafnsson V. Risk of autism spectrum disorders after infantile spasms: a population-based study nested in a cohort with seizures in the first year of life. Epilepsia 2008;49:1865-1870.

    PubMed  Google Scholar 

  18. Cappellari M, McDermid RM, Alatalo K, et al. Systematic variation of the stellar initial mass function in early-type galaxies. Nature 2012;484:485-488.

    PubMed  CAS  Google Scholar 

  19. Chu-Shore CJ, Major, P, Camposano S, Muzykewicz D, Thiele EA. The natural history of epilepsy in tuberous sclerosis complex. Epilepsia 2010;51:1236-1241.

    PubMed  PubMed Central  Google Scholar 

  20. Riikonen, R., A long-term follow-up study of 214 children with the syndrome of infantile spasms. Neuropediatrics 1982;13:14-23.

    PubMed  CAS  Google Scholar 

  21. Watemberg N. Infantile spasms: treatment challenges. Curr Treat Options Neurol 2012;14:322-331.

    PubMed  Google Scholar 

  22. Saemundsen E, Ludvigsson P, Rafnsson V. Autism spectrum disorders in children with a history of infantile spasms: a population-based study. J Child Neurol 2007;22:1102-1107.

    PubMed  Google Scholar 

  23. Jobst BC. Infantile spasms: the devil is in the details, but do we see the forest for the trees? Epilepsy Curr 2011;11:151-152.

    PubMed  PubMed Central  Google Scholar 

  24. Swann JW, Moshe SL. On the basic mechanisms of infantile spasms. In: Noebels JL, Avoli M, Rogawski M, Olsen R, Delgado-Escueta A (eds) Jasper's basic mechanisms of the epilepsies. OUP USA, Bethesda, MD, 2012.

    Google Scholar 

  25. Riikonen R. A European perspective-comments on "Infantile spasms: a U.S. consensus report". Epilepsia 2010;51:2215-2216.

    PubMed  Google Scholar 

  26. Lux AL, Edwards SW, Hancock E, et al. The United Kingdom Infantile Spasms Study comparing vigabatrin with prednisolone or tetracosactide at 14 days: a multicentre, randomised controlled trial. Lancet 2004;364:1773-1778.

    PubMed  CAS  Google Scholar 

  27. Darke K, Edwards SW, Hancock E, et al. Developmental and epilepsy outcomes at age 4 years in the UKISS trial comparing hormonal treatments to vigabatrin for infantile spasms: a multi-centre randomised trial. Arch Dis Child 2010;95:382-386.

    PubMed  Google Scholar 

  28. Lux AL, Edwards SW, Hancock E, et al. The United Kingdom Infantile Spasms Study (UKISS) comparing hormone treatment with vigabatrin on developmental and epilepsy outcomes to age 14 months: a multicentre randomised trial. Lancet Neurol 2005;4:712-717.

    PubMed  CAS  Google Scholar 

  29. Gastraut H, Roger J, Soulayrol R, et al. Childhood epileptic encephalopathy with diffuse slow spike-waves (otherwise known as "petit mal variant") or Lennox syndrome. Epilepsia 1966;7:139-179.

    PubMed  CAS  Google Scholar 

  30. Siniatchkin M, Coropceanu D, Moeller F, Boor R, Stephani U. EEG-fMRI reveals activation of brainstem and thalamus in patients with Lennox-Gastaut syndrome. Epilepsia 2011;52:766-774.

    PubMed  Google Scholar 

  31. Pillay N, Archer JS, Badawy RA, Flanagan DF, Berkovic SF, Jackson G. Networks underlying paroxysmal fast activity and slow spike and wave in Lennox-Gastaut syndrome. Neurology 2013;81:665-673.

    PubMed  PubMed Central  Google Scholar 

  32. Arzimanoglou A, Resnick T. All children who experience epileptic falls do not necessarily have Lennox-Gastaut syndrome…but many do. Epileptic Disord 2011;13(Suppl. 1):S3-S13.

    PubMed  Google Scholar 

  33. Arzimanoglou A, French J, Blume WT, et al. Lennox-Gastaut syndrome: a consensus approach on diagnosis, assessment, management, and trial methodology. Lancet Neurol 2009;8:82-93.

    PubMed  Google Scholar 

  34. Crumrine PK. Management of seizures in Lennox-Gastaut syndrome. Paediatr Drugs 2011;13:107-118.

    PubMed  Google Scholar 

  35. Hancock EC, Cross HH. Treatment of Lennox-Gastaut syndrome. Cochrane Database Syst Rev 2009:CD003277.

  36. Purcarin G, Ng YT. Experience in the use of clobazam in the treatment of Lennox-Gastaut syndrome. Ther Adv Neurol Disord 2014;7:169-176.

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Carmant L, Whiting S. Lennox-Gastaut syndrome: an updateon treatment. Can J Neurol Sci 2012;39:702-711.

    PubMed  Google Scholar 

  38. Maehara T, Shimizu H. Surgical outcome of corpus callosotomy in patients with drop attacks. Epilepsia 2001;42:67-71.

    PubMed  CAS  Google Scholar 

  39. Lancman G, Virk M, Shao H, et al. Vagus nerve stimulation vs. corpus callosotomy in the treatment of Lennox-Gastaut syndrome: a meta-analysis. Seizure 2013;22:3-8.

    PubMed  PubMed Central  Google Scholar 

  40. Rougier A, Claverie B, Pedespan JM, Marchal C, Loiseau P. Callosotomy for intractable epilepsy: overall outcome. J Neurosurg Sci 1997;41:51-57.

    PubMed  CAS  Google Scholar 

  41. Dravet C. The core Dravet syndrome phenotype. Epilepsia 2011;52(Suppl. 2):3-9.

    PubMed  Google Scholar 

  42. Dravet C, Bureau M, Oguni H, Fukuyama Y, Cokar O. Severe myoclonic epilepsy in infancy: Dravet syndrome. Adv Neurol 2005;95:71-102.

    PubMed  Google Scholar 

  43. Hirose S, Scheffer IE, Marini C, et al. SCN1A testing for epilepsy: application in clinical practice. Epilepsia 2013;54:946-952.

    PubMed  CAS  Google Scholar 

  44. Meisler MH, O'Brien JE, Sharkey LM. Sodium channel gene family: epilepsy mutations, gene interactions and modifier effects. J Physiol 2010;588:1841-1848.

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Chen PT, Young C, Lee WT, Wang PJ, Peng SS, Shen YZ. Early epileptic encephalopathy with suppression burst electroencephalographic pattern–an analysis of eight Taiwanese patients. Brain Dev 2001;23:715-720.

    PubMed  CAS  Google Scholar 

  46. Ohtahara S, Yamatogi Y. Ohtahara syndrome: with special reference to its developmental aspects for differentiating from early myoclonic encephalopathy. Epilepsy Res 2006;70(Suppl. 1):S58-S67.

    PubMed  Google Scholar 

  47. Molinari F, Raas-Rothschild A, Rio M, et al., Impaired mitochondrial glutamate transport in autosomal recessive neonatal myoclonic epilepsy. Am J Hum Genet 2005;76:334-339.

    PubMed  CAS  PubMed Central  Google Scholar 

  48. Molinari F. Mitochondria and neonatal epileptic encephalopathies with suppression burst. J Bioenerg Biomembr 2010;42:467-471.

    PubMed  CAS  Google Scholar 

  49. Molinari F, Kaminska A, Fiermonte G, et al. Mutations in the mitochondrial glutamate carrier SLC25A22 in neonatal epileptic encephalopathy with suppression bursts. Clin Genet 2009;76:188-194.

    PubMed  CAS  Google Scholar 

  50. Cohen R, Basel-Vanagaite L, Goldberg-Stern H, et al. Two siblings with early infantile myoclonic encephalopathy due to mutation in the gene encoding mitochondrial glutamate/H+ symporter SLC25A22. Eur J Paediatr Neurol 2014 Jul 5.

  51. Coppola G, Plouin P, Chiron C, Robain O, Dulac O. Migrating partial seizures in infancy: a malignant disorder with developmental arrest. Epilepsia 1995;36:1017-1024.

    PubMed  CAS  Google Scholar 

  52. Nabbout R, Dulac O. Epileptic syndromes in infancy and childhood. Curr Opin Neurol 2008;21:161-166.

    PubMed  Google Scholar 

  53. Coppola G. Malignant migrating partial seizures in infancy. Handb Clin Neurol 2013;111:605-609.

    PubMed  Google Scholar 

  54. Barcia G, Fleming MR, Deligniere A, et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet 2012;44:1255-1259.

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Ohba C, Kato M, Takahashi S, et al. Early onset epileptic encephalopathy caused by de novo SCN8A mutations. Epilepsia 2014;55:994-1000.

    PubMed  CAS  Google Scholar 

  56. Landau WM, Kleffner FR. Syndrome of acquired aphasia with convulsive disorder in children. Neurology 1957;7:523-530.

    PubMed  CAS  Google Scholar 

  57. Nakano S, Okuno T, Mikawa H. Landau-Kleffner syndrome. EEG topographic studies. Brain Dev 1989;11:43-50.

    PubMed  CAS  Google Scholar 

  58. Rudolf G, Valenti MP, Hirsch E, Szepetowski P. From rolandic epilepsy to continuous spike-and-waves during sleep and Landau-Kleffner syndromes: insights into possible genetic factors. Epilepsia 2009;50(Suppl. 7):25-28.

    PubMed  CAS  Google Scholar 

  59. Van Hirtum-Das M, et al. Children with ESES: variability in the syndrome. Epilepsy Res 2006;70(Suppl. 1):S248-S258.

    PubMed  Google Scholar 

  60. Lesca G, Rudolf G, Bruneau N, et al. GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat Genet 2013;45:1061-1066.

    PubMed  CAS  Google Scholar 

  61. Conroy J, McGettigan PA, McCreary D, et al., Towards the identification of a genetic basis for Landau-Kleffner syndrome. Epilepsia 2014;55:858-865.

    PubMed  CAS  Google Scholar 

  62. Caraballo RH, Cejas N, Chamorro N, Kaltenmeier MC, Fortini S, Soprano AM. Landau-Kleffner syndrome: a study of 29 patients. Seizure 2014;23:98-104.

    PubMed  Google Scholar 

  63. Loddenkemper T, Fernandez IS, Peters JM. Continuous spike and waves during sleep and electrical status epilepticus in sleep. J Clin Neurophysiol 2011;28:154-164.

    PubMed  Google Scholar 

  64. Nickels K, Wirrell E. Electrical status epilepticus in sleep. Semin Pediatr Neurol 2008;15:50-60.

    PubMed  Google Scholar 

  65. Sánchez Fernández I, Loddenkemper T, Peters JM, Kothare SV. Electrical status epilepticus in sleep: clinical presentation and pathophysiology. Pediatr Neurol 2012;47:390-410.

    PubMed  Google Scholar 

  66. Tassinari CA, Rubboli G, Volpi L, et al. Encephalopathy with electrical status epilepticus during slow sleep or ESES syndrome including the acquired aphasia. Clin Neurophysiol 2000;111(Suppl. 2):S94-S102.

    PubMed  Google Scholar 

  67. Aicardi J, Chevrie JJ. Myoclonic epilepsies of childhood. Neuropadiatrie 1971;3:177-190.

    PubMed  CAS  Google Scholar 

  68. Bureau M, Tassinari CA. Epilepsy with myoclonic absences. Brain Dev 2005;27:178-184.

    PubMed  Google Scholar 

  69. Elia M. Myoclonic status in nonprogressive encephalopathies: an update. Epilepsia 2009;50(Suppl. 5):41-44.

    PubMed  Google Scholar 

  70. Caraballo RH, et al. Myoclonic status in nonprogressive encephalopathies: study of 29 cases. Epilepsia 2007;48:107-113.

    PubMed  Google Scholar 

  71. Dalla Bernardina B, Fontana E, Darra F. Myoclonic status in nonprogressive encephalopathies. Adv Neurol 2005;95:59-70.

    PubMed  Google Scholar 

  72. Khan S, Al Baradie R. Epileptic encephalopathies: an overview. Epilepsy Res Treat 2012;2012:403592.

    PubMed  PubMed Central  Google Scholar 

  73. Hildebrand MS, Dahl HH, Damiano JA, Smith RJ, Scheffer IE, Berkovic SF. Recent advances in the molecular genetics of epilepsy. J Med Genet 2013;50:271-279.

    PubMed  CAS  Google Scholar 

  74. Thomas RH, Berkovic SF. The hidden genetics of epilepsy-a clinically important new paradigm. Nat Rev Neurol 2014;10:283-292.

    PubMed  Google Scholar 

  75. Mefford HC, Yendle SC, Hsu C, et al., Rare copy number variants are an important cause of epileptic encephalopathies. Ann Neurol 2011;70:974-985.

    PubMed  CAS  PubMed Central  Google Scholar 

  76. Lemke JR, Lal D, Reinthaler EM, et al. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet 2013;45:1067-1072.

    PubMed  CAS  Google Scholar 

  77. Carvill GL, Regan BM, Yendle SC, et al. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat Genet 2013;45:1073-1076.

    PubMed  CAS  Google Scholar 

  78. Wallace RH, Hodgson BL, Grinton BE, et al. Sodium channel alpha1-subunit mutations in severe myoclonic epilepsy of infancy and infantile spasms. Neurology 2003;61:765-769.

    PubMed  CAS  Google Scholar 

  79. Fujiwara T, Sugawara T, Mazaki-Miyazaki E, et al. Mutations of sodium channel alpha subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic-clonic seizures. Brain 2003;126:531-546.

    PubMed  Google Scholar 

  80. Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 2001;68:1327-1332.

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Nabbout R, Gennaro E, Dalla Bernardina B, et al. Spectrum of SCN1A mutations in severe myoclonic epilepsy of infancy. Neurology 2003;60:1961-1967.

    PubMed  CAS  Google Scholar 

  82. Harkin LA, Bowser DN, Dibbens LM, et al. Truncation of the GABA(A)-receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet 2002;70:530-536.

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Patino GA, Claes LR, Lopez-Santiago LF, et al., A functional null mutation of SCN1B in a patient with Dravet syndrome. J Neurosci 2009;29:10764-10778.

    PubMed  PubMed Central  Google Scholar 

  84. Lossin C, Shi X, Rogawski MA, Hirose S. Compromised function in the Na(v)1.2 Dravet syndrome mutation R1312T. Neurobiol Dis 2012;47:378-384.

    PubMed  CAS  Google Scholar 

  85. Depienne C, Bouteiller D, Keren B, et al. Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. PLoS Genet 2009;5:e1000381.

    PubMed  PubMed Central  Google Scholar 

  86. van Harssel JJ, Weckhuysen S, van Kempen MJ, et al. Clinical and genetic aspects of PCDH19-related epilepsy syndromes and the possible role of PCDH19 mutations in males with autism spectrum disorders. Neurogenetics 2013;14:23-34.

    PubMed  CAS  Google Scholar 

  87. Veeramah KR, O'Brien JE, Meisler MH, et al. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet 2012;90:502-510.

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Dibbens LM, Tarpey PS, Hynes K, et al. X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat Genet 2008;40:776-781.

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Epi4K Consortium; Epilepsy Phenome/Genome Project, Allen AS, et al. De novo mutations in epileptic encephalopathies. Nature 2013;501:217-221.

    PubMed  CAS  Google Scholar 

  90. Carvill GL, Heavin SB, Yendle SC, et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet 2013;45:825-830.

    PubMed  CAS  Google Scholar 

  91. Rauch A, Wieczorek D, Graf E, et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 2012;380:1674-1682.

    PubMed  CAS  Google Scholar 

  92. Vaher U, Nõukas M, Nikopensius T, et al. De novo SCN8A mutation identified by whole-exome sequencing in a boy with neonatal epileptic encephalopathy, multiple congenital anomalies, and movement disorders. J Child Neurol 2013 Dec 18.

  93. Nava C, Dalle C, Rastetter A, et al. De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nat Genet 2014;46:640-645.

    PubMed  CAS  Google Scholar 

  94. Klepper J, Leiendecker B. Glut1 deficiency syndrome and novel ketogenic diets. J Child Neurol 2013;28:1045-1048.

    PubMed  Google Scholar 

  95. Klepper J, Leiendecker B, Riemann E, Baumeister FA. [The ketogenic diet in German-speaking countries: update 2003]. Klin Padiatr 2004;216:277-285 [in German].

    PubMed  CAS  Google Scholar 

  96. Klepper J, Scheffer H, Leiendecker B, et al. Seizure control and acceptance of the ketogenic diet in GLUT1 deficiency syndrome: a 2- to 5-year follow-up of 15 children enrolled prospectively. Neuropediatrics 2005;36:302-308.

    PubMed  CAS  Google Scholar 

  97. De Vivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Harik SI. Defective glucose transport across the blood-brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med 1991;325:703-709.

    PubMed  Google Scholar 

  98. Klepper J, Leiendecker B. GLUT1 deficiency syndrome—2007 update. Dev Med Child Neurol 2007;49:707-716.

    PubMed  Google Scholar 

  99. Seidner G, Alvarez MG, Yeh JI, et al. GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nat Genet 1998;18:188-191.

    PubMed  CAS  Google Scholar 

  100. Klepper J. GLUT1 deficiency syndrome in clinical practice. Epilepsy Res 2012;100:272-277.

    PubMed  CAS  Google Scholar 

  101. Klepper J, Scheffer H, Elsaid MF, Kamsteeg EJ, Leferink M, Ben-Omran T. Autosomal recessive inheritance of GLUT1 deficiency syndrome. Neuropediatrics 2009;40:207-210.

    PubMed  CAS  Google Scholar 

  102. Rotstein M, Engelstad K, Yang H, et al. Glut1 deficiency: inheritance pattern determined by haploinsufficiency. Ann Neurol 2010;68:955-958.

    PubMed  PubMed Central  Google Scholar 

  103. Harkin LA, McMahon JM, Iona X, et al. The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain 2007;130:843-852.

    PubMed  Google Scholar 

  104. Soldovieri MV, Boutry-Kryza N, Milh M, et al., Novel KCNQ2 and KCNQ3 mutations in a large cohort of families with benign neonatal epilepsy: first evidence for an altered channel regulation by syntaxin-1A. Hum Mutat 2014;35:356-367.

    PubMed  CAS  Google Scholar 

  105. Numis AL, Angriman M, Sullivan JE, et al. KCNQ2 encephalopathy: delineation of the electroclinical phenotype and treatment response. Neurology 2014;82:368-370.

    PubMed  Google Scholar 

  106. Heron SE, Crossland KM, Andermann E, et al. Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet 2002;360:851-852.

    PubMed  CAS  Google Scholar 

  107. Berkovic SF, Heron SE, Giordano L, et al. Benign familial neonatal-infantile seizures: characterization of a new sodium channelopathy. Ann Neurol 2004;55:550-557.

    PubMed  CAS  Google Scholar 

  108. Striano P, Bordo L, Lispi ML, et al., A novel SCN2A mutation in family with benign familial infantile seizures. Epilepsia 2006;47:218-220.

    PubMed  CAS  Google Scholar 

  109. Herlenius E, Heron SE, Grinton BE, et al. SCN2A mutations and benign familial neonatal-infantile seizures: the phenotypic spectrum. Epilepsia 2007;48:1138-1142.

    PubMed  CAS  Google Scholar 

  110. Liao Y, Deprez L, Maljevic S, et al. Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain 2010;133:1403-1414.

    PubMed  Google Scholar 

  111. Hackenberg A, Baumer A, Sticht H, et al. Infantile epileptic encephalopathy, transient choreoathetotic movements, and hypersomnia due to a de novo missense mutation in the SCN2A gene. Neuropediatrics 2014;45:261-264.

    PubMed  Google Scholar 

  112. Matalon D, Goldberg E, Medne L, Marsh ED. Confirming an expanded spectrum of SCN2A mutations: a case series. Epileptic Disord 2014;16:13-18.

    PubMed  Google Scholar 

  113. Saitsu H, Kato M, Okada I, et al. STXBP1 mutations in early infantile epileptic encephalopathy with suppression-burst pattern. Epilepsia 2010;51:2397-2405.

    PubMed  CAS  Google Scholar 

  114. Milh M, Villeneuve N, Chouchane M, et al. Epileptic and nonepileptic features in patients with early onset epileptic encephalopathy and STXBP1 mutations. Epilepsia 2011;52:1828-1834.

    PubMed  Google Scholar 

  115. Romaniello R, Zucca C, Tenderini E, et al. A novel mutation in STXBP1 gene in a child with epileptic encephalopathy and an atypical electroclinical pattern. J Child Neurol 2014;29:249-253.

    PubMed  Google Scholar 

  116. Ottman R, Lee JH, Hauser WA, et al., Reliability of seizure classification using a semistructured interview. Neurology 1993;43:2526-2530.

    PubMed  CAS  PubMed Central  Google Scholar 

  117. McTague A, Cross JH. Treatment of epileptic encephalopathies. CNS Drugs 2013;27:175-184.

    PubMed  CAS  Google Scholar 

  118. Maguire MJ, Hemming K, Wild JM, Hutton JL, Marson AG. Prevalence of visual field loss following exposure to vigabatrin therapy: a systematic review. Epilepsia 2010;51:2423-2431.

    PubMed  Google Scholar 

  119. Lemmon ME, Kossoff EH. New treatment options for lennox-gastaut syndrome. Curr Treat Options Neurol 2013;15:519-528.

    PubMed  Google Scholar 

  120. Glauser T, Kluger G, Sachdeo R, Krauss G, Perdomo C, Arroyo S. Rufinamide for generalized seizures associated with Lennox-Gastaut syndrome. Neurology 2008;70:1950-1958.

    PubMed  CAS  Google Scholar 

  121. Lotte J, Haberlandt E, Neubauer B, Staudt M, Kluger GJ. Bromide in patients with SCN1A-mutations manifesting as Dravet syndrome. Neuropediatrics 2012;43:17-21.

    PubMed  CAS  Google Scholar 

  122. Fejerman N, Caraballo R, Cersósimo R, Ferraro SM, Galicchio S, Amartino H. Sulthiame add-on therapy in children with focal epilepsies associated with encephalopathy related to electrical status epilepticus during slow sleep (ESES). Epilepsia 2012;53:1156-1161.

    PubMed  CAS  Google Scholar 

  123. Zupanc ML, Roell Werner R, Schwabe MS, et al., Efficacy of felbamate in the treatment of intractable pediatric epilepsy. Pediatr Neurol 2010;42:396-403.

    PubMed  Google Scholar 

  124. Okuda K, Yasuhara A, Kamei A, Araki A, Kitamura N, Kobayashi Y. Successful control with bromide of two patients with malignant migrating partial seizures in infancy. Brain Dev 2000;22:56-59.

    PubMed  CAS  Google Scholar 

  125. Verhelst H, Boon P, Buyse G, et al. Steroids in intractable childhood epilepsy: clinical experience and review of the literature. Seizure 2005;14:412-421.

    PubMed  Google Scholar 

  126. Goldsmith IL, Zupanc ML, Buchhalter JR. Long-term seizure outcome in 74 patients with Lennox-Gastaut syndrome: effects of incorporating MRI head imaging in defining the cryptogenic subgroup. Epilepsia 2000;41:395-399.

    PubMed  CAS  Google Scholar 

  127. Nunes VD, Sawyer L, Neilson J, Sarri G, Cross JH. Diagnosis and management of the epilepsies in adults and children: summary of updated NICE guidance. BMJ 2012;344:e281.

    PubMed  Google Scholar 

  128. Neal EG, Chaffe H, Schwartz RH, et al. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol 2008;7:500-506.

    PubMed  Google Scholar 

  129. Li B, Tong L, Jia G, Sun R. Effects of ketogenic diet on the clinical and electroencephalographic features of children with drug therapy-resistant epilepsy. Exp Ther Med 2013;5:611-615.

    PubMed  CAS  PubMed Central  Google Scholar 

  130. Thammongkol S, Vears DF, Bicknell-Royle J, et al., Efficacy of the ketogenic diet: which epilepsies respond? Epilepsia 2012;53:e55-e59.

    PubMed  CAS  Google Scholar 

  131. Noh HS, Kim YS, Lee HP, et al., The protective effect of a ketogenic diet on kainic acid-induced hippocampal cell death in the male ICR mice. Epilepsy Res 2003;53:119-128.

    PubMed  CAS  Google Scholar 

  132. Kossoff EH, Zupec-Kania BA, Armark PE, et al., Optimal clinical management of children receiving the ketogenic diet: recommendations of the International Ketogenic Diet Study Group. Epilepsia 2009;50:304-317.

    PubMed  Google Scholar 

  133. Caraballo RH. Nonpharmacologic treatments of Dravet syndrome: focus on the ketogenic diet. Epilepsia 2011;52(Suppl. 2):79-82.

    PubMed  Google Scholar 

  134. Cross JH, Neville BG. The surgical treatment of Landau-Kleffner syndrome. Epilepsia 2009;50(Suppl. 7):63-67.

    PubMed  Google Scholar 

  135. Peltola ME, Liukkonen E, Granström, ML et al. The effect of surgery in encephalopathy with electrical status epilepticus during sleep. Epilepsia 2011;52:602-609.

    PubMed  Google Scholar 

  136. Liu Y, Lopez-Santiago LF, Yuan Y, et al. Dravet syndrome patient-derived neurons suggest a novel epilepsy mechanism. Ann Neurol 2013;74:128-139.

    PubMed  CAS  PubMed Central  Google Scholar 

  137. Kriaucionis S, Bird A. DNA methylation and Rett syndrome. Hum Mol Genet 2003;12:R221-R227.

    PubMed  CAS  Google Scholar 

  138. Amir RE, Van den Veyver IB, et al., Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999;23:185-188.

    PubMed  CAS  Google Scholar 

  139. Hotta A, Cheung AY, Farra N, et al. Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat Methods 2009;6:370-376.

    PubMed  CAS  Google Scholar 

  140. Marchetto MC, Carromeu C, Acab A, et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 2010;143:527-539.

    PubMed  CAS  PubMed Central  Google Scholar 

  141. Ananiev G, Williams EC, Li H, Chang Q. Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One 2011; 6:e25255.

    PubMed  CAS  PubMed Central  Google Scholar 

  142. Cheung AY, Horvath LM, Grafodatskaya D, et al., Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum Mol Genet 2011;20:2103-2115.

    PubMed  CAS  PubMed Central  Google Scholar 

  143. Kim KY, Hysolli E, Park IH. Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proc Natl Acad Sci U S A 2011;108:14169-14174.

    PubMed  CAS  PubMed Central  Google Scholar 

  144. Soldner F, Laganière J, Cheng AW, et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 2011;146:318-331.

    PubMed  CAS  PubMed Central  Google Scholar 

  145. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet 2010;11:636-646.

    PubMed  CAS  Google Scholar 

  146. Carroll D. Genome engineering with zinc-finger nucleases. Genetics 2011;188:773-782.

    PubMed  CAS  PubMed Central  Google Scholar 

  147. Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 2013;14:49-55.

    PubMed  CAS  PubMed Central  Google Scholar 

  148. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337:816-821.

    PubMed  CAS  Google Scholar 

  149. Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013;339:823-826.

    PubMed  CAS  PubMed Central  Google Scholar 

  150. Baraban SC, Dinday MT, Hortopan GA. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat Commun 2013;4:2410.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Maura Madou (M.D) for patiently reviewing this article.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sahar Esmaeeli Nieh or Elliott H. Sherr.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 510 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeeli Nieh, S., Sherr, E.H. Epileptic Encephalopathies: New Genes and New Pathways. Neurotherapeutics 11, 796–806 (2014). https://doi.org/10.1007/s13311-014-0301-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-014-0301-2

Keywords

Navigation