Skip to main content

Advertisement

Log in

Spinal Muscular Atrophy: Journeying From Bench to Bedside

  • Review
  • Published:
Neurotherapeutics

Abstract

Spinal muscular atrophy (SMA) is a frequently fatal neuromuscular disorder and the most common inherited cause of infant mortality. SMA results from reduced levels of the survival of motor neuron (SMN) protein. Although the disease was first described more than a century ago, a precise understanding of its genetics was not obtained until the SMA genes were cloned in 1995. This was followed in rapid succession by experiments that assigned a role to the SMN protein in the proper splicing of genes, novel animal models of the disease, and the eventual use of the models in the pre clinical development of rational therapies for SMA. These successes have led the scientific and clinical communities to the cusp of what are expected to be the first truly promising treatments for the human disorder. Yet, important questions remain, not the least of which is how SMN paucity triggers a predominantly neuromuscular phenotype. Here we review how our understanding of the disease has evolved since the SMA genes were identified. We begin with a brief description of the genetics of SMA and the proposed roles of the SMN protein. We follow with an examination of how the genetics of the disease was exploited to develop genetically faithful animal models, and highlight the insights gained from their analysis. We end with a discussion of ongoing debates, future challenges, and the most promising treatments to have emerged from our current knowledge of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Werdnig G. Zwei frühinfantile hereditäre Fälle von progressiver Muskelatrophie unter dem Bilde der Dystrophie, aber auf neurotischer Grundlage. Arch Psychiat Nervenkr 1891;22:437-480.

    Google Scholar 

  2. Hoffmann J. Ueber chronische spinale Muskelatrophie im Kindesalter, auf familiärer Basis. Deutsch Z Nervenheilk 1893; 3:427-470.

    Google Scholar 

  3. Hoffmann J. Weiterer Beitrag zur Lehre von der hereditären progressiven spinalen Muskelatrophie im Kindesalter nebst Bemerkungen über den fortschreitenden Muskelschwund im Allgemeinen . Deutsch Z Nervenheilk 1897;10:292-320.

    Google Scholar 

  4. Hoffmann J. Dritter Beitrag zur Lehre von der hereditären progressiven spinalen Muskelatrophie im Kindesalter. Deutsch Z Nervenheilk 1900;18:217-224.

    Google Scholar 

  5. Kugelberg E, Welander L. Heredofamilial juvenile muscular atrophy simulating muscular dystrophy. AMA Arch Neurol Psychiatry 1956;75:500-509.

    PubMed  CAS  Google Scholar 

  6. Dubowitz V. Infantile muscular atrophy. A prospective study with particular reference to a slowly progressive variety. Brain 1964;87:707-718.

    PubMed  CAS  Google Scholar 

  7. Crawford TO, Pardo CA. The neurobiology of childhood spinal muscular atrophy. Neurobiol Dis 1996;3:97-110.

    PubMed  CAS  Google Scholar 

  8. Simic G, Mladinov M, Seso Simic D, et al. Abnormal motoneuron migration, differentiation, and axon outgrowth in spinal muscular atrophy. Acta Neuropathol 2008;115:313-326.

    PubMed  Google Scholar 

  9. Chou S, Nonaka, I. Werdnig-Hoffmann disesase: proposal of a pathogenic mechanism. Acta Neuropathol 1978;41:45-54.

    PubMed  CAS  Google Scholar 

  10. Marshal A, Duchen, LW. Sensory involvement in infantile spinal muscular atrophy. J Neurol Sci 1975;26:349-359.

    Google Scholar 

  11. Towfighi J, Young, RSK, Ward, RM. Is Werdnig-Hoffmann disease a pure lower motor neuron disorder? Acta Neuropathol 1985;65:270-280.

    PubMed  CAS  Google Scholar 

  12. Peress NS, Stermann AB, Miller R, Kaplan CG, Little BW. “Chromatolytic” neurons in lateral geniculate body in Werdnig-Hoffmann disease. Clin Neuropathol 1986;5:69-72.

    PubMed  CAS  Google Scholar 

  13. Murayama TL, Bouldin TW, Suzuki K. Immunocytochemcial and ultrastructural studies of Werdnig-Hoffmann disease. Acta Neuropathol 1991;81:408-417.

    PubMed  CAS  Google Scholar 

  14. Dubowitz V. Muscle disorders in childhood, 2nd ed. Saunders, Philadelphia, PA, 1995.

    Google Scholar 

  15. Nadeau A, D'Anjou G, Debray G, et al. A newborn with spinal muscular atrophy type 0 presenting with a clinicopathological picture suggestive of myotubular myopathy. J Child Neurol 2007;22:1301-1304.

    PubMed  Google Scholar 

  16. Schmid A, DiDonato CJ. Animal models of spinal muscular atrophy. J Child Neurol 2007; 22:1004-1012.

    PubMed  Google Scholar 

  17. Murray LM, Comley LH, Thomson D, et al. Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy. Hum Mol Genet 2008;17:949-962.

    PubMed  CAS  Google Scholar 

  18. Kariya S, Park GH, Maeno-Hikichi Y, et al. Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy. Hum Mol Genet 2008;17:2552-2569.

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Ling KK, Lin MY, Zingg B, Feng Z, Ko CP. Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy. PLoS One 2010;5: e15457.

    PubMed  PubMed Central  Google Scholar 

  20. Martinez-Hernandez R, Bernal S, Also-Rasso E, et al. Synaptic defects in type 1 spinal muscular atrophy in human development. J Pathol 2013;229:49-61.

    PubMed  CAS  Google Scholar 

  21. Hamilton G, Gillingwater TH. Spinal muscular atrophy: going beyond the motor neuron. Trends Mol Med 2013;19:40-50.

    PubMed  CAS  Google Scholar 

  22. Bowerman M, Swoboda KJ, Michalski JP, et al. Glucose metabolism and pancreatic defects in spinal muscular atrophy. Ann Neurol 2012;72:256-268.

    PubMed  CAS  Google Scholar 

  23. Sugarman EA, Nagan N, Zhu H, et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72,400 specimens. Eur J Hum Genet 2012;20:27-32.

    PubMed  PubMed Central  Google Scholar 

  24. Lefebvre S, Burglen L, Reboullet S, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995;80:155-165.

    PubMed  CAS  Google Scholar 

  25. Monani UR, Lorson, CL, Parsons DW, et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet 1999;8:1177-1183.

    PubMed  CAS  Google Scholar 

  26. Kashima T, Manley JL. A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet 2003;34:460-463.

    PubMed  CAS  Google Scholar 

  27. Lorson CL, Hahnen E, Androphy EJ, and Wirth B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci USA 1999;96:6307-6311.

    PubMed  CAS  PubMed Central  Google Scholar 

  28. Cho S, Dreyfuss G. A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity. Genes Dev 2010;24:438-442.

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Carpten JD, DiDonato CJ, Ingraham SE, et al. A YAC contig of the region containing the spinal muscular atrophy gene (SMA): identification of an unstable region. Genomics 1994; 24:351-356.

    PubMed  CAS  Google Scholar 

  30. Coovert DD, Le TT, McAndrew PE, et al. The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet 1997;6:1205-1214.

    PubMed  CAS  Google Scholar 

  31. Lefebvre S, Burlet P, Liu Q, et al. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 1997;16:265-269.

    PubMed  CAS  Google Scholar 

  32. Feldkotter M, Schwarzer V, Wirth R, Wienker TF, Wirth B. Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 2002;70:358-368.

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Battaglia G, Princivalle A, Forti F, Lizier C, Zeviani M. Expression of the SMN gene, the spinal muscular atrophy determining gene, in the mammalian central nervous system. Hum Mol Genet 1997;6:1961-1971.

    PubMed  CAS  Google Scholar 

  34. Liu Q, Dreyfuss G. A novel nuclear structure containing the survival of motor neurons protein. EMBO J 1996;15:3555-3565.

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Liu Q, Fischer U, Wang F, Dreyfuss G. The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 1997;90:1013-1021.

    PubMed  CAS  Google Scholar 

  36. Fischer U, Liu Q, Dreyfuss G. The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 1997;90:1023-1029.

    PubMed  CAS  Google Scholar 

  37. Sumpter V, Kahrs A, Fischer U, Kornstadt U, Luhrmann R. In vitro reconstitution of U1 and U2 snRNPs from isolated proteins and snRNA. Mol Biol Rep 1992;16:229-240.

    PubMed  CAS  Google Scholar 

  38. Raker VA, Hartmuth K, Kastner B, Luhrmann R. Spliceosomal U snRNP core assembly: Sm proteins assemble onto an Sm site RNA nonanucleotide in a specific and thermodynamically stable manner. Mol Cell Biol 1999;19:6554-6565.

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Pellizzoni L, Yong J, Dreyfuss G. Essential role for the SMN complex in the specificity of snRNP assembly. Science 2002;298:1775-1779.

    PubMed  CAS  Google Scholar 

  40. Battle DJ, Kasim M, Yong J, et al. The SMN complex: an assembly machine for RNPs. Cold Spring Harb Symp Quant Biol 2006;71:313-320.

    PubMed  CAS  Google Scholar 

  41. Gabanella F, Butchbach ME, Saieva L, et al. Ribonucleoprotein assembly defects correlate with spinal muscular atrophy severity and preferentially affect a subset of spliceosomal snRNPs. PLoS One 2007;2:e921.

    PubMed  PubMed Central  Google Scholar 

  42. Zhang Z, Lotti F, Dittmar K, et al. SMN deficiency causes tissue-specific perturbations in the repertoire of snRNAs and widespread defects in splicing. Cell 2008;133:585-600.

    PubMed  CAS  PubMed Central  Google Scholar 

  43. See K, Yadav P, Giegerich M, et al. SMN deficiency alters Nrxn2 expression and splicing in zebrafish and mouse models of spinal muscular atrophy. Hum Mol Genet 2014;23:1754-1770.

    PubMed  CAS  Google Scholar 

  44. Lotti F, Imlach WL, Saieva L, et al. An SMN-dependent U12 splicing event essential for motor circuit function. Cell 2012;151:440-454.

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Wishart TM, Mutsaers CA, Riessland M, et al. Dysregulation of ubiquitin homeostasis and β-catenin signaling promote spinal muscular atrophy. J Clin Invest 2014;124:1821-1834.

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Zhang Z, Pinto AM, Wan L, et al. Dysregulation of synaptogenesis genes antecedes motor neuron pathology in spinal muscular atrophy. Proc Natl Acad Sci 2013;110:19348-19353.

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Zhang H, Xing L, Rossoll W, Wichterle H, Singer RH, Bassell GJ. Multiprotein complexes of the survival of motor neuron protein SMN with Gemins traffic to neuronal processes and growth cones of motor neurons. J Neurosci 2006;26:8622-8632.

    PubMed  CAS  Google Scholar 

  48. Terns MP, Terns RM. Macromolecular complexes: SMN—the master assembler. Curr Biol 2001;11:862-864.

    Google Scholar 

  49. Akten B, Kye MJ, Hao le T, et al. Interaction of survival of motor neuron (SMN) and HuD proteins with mRNA cpg15 rescues motor neuron axonal deficits. Proc Natl Acad Sci USA 2011;108:10337-10342.

    PubMed  CAS  PubMed Central  Google Scholar 

  50. Hubers L, Valderrama-Carvajal H, Laframboise J, Timbers J, Sanchez G, Côté J. HuD interacts with survival motor neuron protein and can rescue spinal muscular atrophy-like neuronal defects. Hum Mol Genet 2011;20:553-579.

    PubMed  CAS  Google Scholar 

  51. Tadesse H, Deschênes-Furry J, Boisvenue S, Côté J. KH-type splicing regulatory protein interacts with survival motor neuron protein and is misregulated in spinal muscular atrophy. Hum Mol Genet 2008;17:506-524.

    PubMed  CAS  Google Scholar 

  52. Rossoll W, Kröning AK, Ohndorf UM, Steegborn C, Jablonka S, Sendtner M. Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons? Hum Mol Genet 2002;11:93-105.

    PubMed  CAS  Google Scholar 

  53. Carrel TL, McWhorter ML, Workman E, et al. Survival motor neuron function in motor axons is independent of functions required for small nuclear ribonucleoprotein biogenesis. J Neurosci 2006;26:11014-11022.

    PubMed  CAS  Google Scholar 

  54. Praveen K, Wen Y, Matera AG. A Drosophila model of spinal muscular atrophy uncouples snRNP biogenesis functions of survival motor neuron from locomotion and viability defects. Cell Rep 2012;1:624-631.

    PubMed  CAS  PubMed Central  Google Scholar 

  55. Tisdale S, Lotti F, Saieva L, et al. SMN is essential for the biogenesis of U7 small nuclear ribonucleoprotein and 3'-end formation of histone mRNAs. Cell Rep 2013;5:1187-1195.

    PubMed  CAS  Google Scholar 

  56. Rochette CF, Gilbert N, Simard LR. SMN gene duplication and the emergence of the SMN2 gene occurred in distinct hominids: SMN2 is unique to Homo sapiens. Hum Genet 2001;108:255-256.

    PubMed  CAS  Google Scholar 

  57. DiDonato CJ, Chen XN, Noya D, Korenberg JR, Nadeau JH, Simard LR. Cloning, characterization, and copy number of the murine survival motor neuron gene: homolog of the spinal muscular atrophy-determining gene. Genome Res 1997;7:339-352.

    PubMed  CAS  Google Scholar 

  58. Viollet L, Bertrandy S, Bueno Brunialti AL, et al. cDNA isolation, expression, and chromosomal localization of the mouse survival motor neuron gene (Smn). Genomics 1997;40:185-188.

    PubMed  CAS  Google Scholar 

  59. Schrank B, Götz R, Gunnersen JM, et al. Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci U S A 1997;94:9920-9925.

    PubMed  CAS  PubMed Central  Google Scholar 

  60. Monani UR, Sendtner M, Coovert DD, et al. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn (-/-) mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet 2000;9:333-339.

    PubMed  CAS  Google Scholar 

  61. Hsieh-Li HM, Chang JG, Jong YJ, et al. A mouse model for spinal muscular atrophy. Nat Genet 2000;24:66-70.

    PubMed  CAS  Google Scholar 

  62. Le TT, Pham LT, Butchbach ME, et al. SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet 2005;14 845-857.

    PubMed  CAS  Google Scholar 

  63. Monani UR, Pastore MT, Gavrilina TO, et al. A transgene carrying an A2G missense mutation in the SMN gene modulates phenotypic severity in mice with severe (type I) spinal muscular atrophy. J Cell Biol 2003;162:919-931.

    PubMed  PubMed Central  Google Scholar 

  64. Osborne M, Gomez D, Feng Z, et al. Characterization of behavioral and neuromuscular junction phenotypes in a novel allelic series of SMA mouse models. Hum Mol Genet 2012;21:4431-4447.

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Michaud M, Arnoux T, Bielli S, et al. Neuromuscular defects and breathing disorders in a new mouse model of spinal muscular atrophy. Neurobiol Dis 2010;38:125-135.

    PubMed  Google Scholar 

  66. Hammond SM, Gogliotti RG, Rao V, Beauvais A, Kothary R, DiDonato CJ. Mouse survival motor neuron alleles that mimic SMN2 splicing and are inducible rescue embryonic lethality early in development but not late. PLoS One 2010;5:e15887.

    PubMed  CAS  PubMed Central  Google Scholar 

  67. Gavrilina TO, McGovern VL, Workman E, et al. Neuronal SMN expression corrects spinal muscular atrophy in severe SMA mice while muscle-specific SMN expression has no phenotypic effect. Hum Mol Genet 2008;17:1063-1075.

    PubMed  CAS  PubMed Central  Google Scholar 

  68. Park GH, Maeno-Hikichi Y, Awano T, Landmesser LT, Monani UR. Reduced survival of motor neuron (SMN) protein in motor neuronal progenitors functions cell autonomously to cause spinal muscular atrophy in model mice expressing the human centromeric (SMN2) gene. J Neurosci 2010;30:12005-12019.

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Gogliotti RG, Quinlan KA, Barlow CB, et al. Motor neuron rescue in spinal muscular atrophy mice demonstrates that sensory-motor defects are a consequence, not a cause, of motor neuron dysfunction. J Neurosci 2012;32:3818-3829.

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Martinez TL, Kong L, Wang X, et al. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy. J Neurosci 2012;32:8703-8715.

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Lee AJ, Awano T, Park GH, Monani UR. Limited phenotypic effects of selectively augmenting the SMN protein in the neurons of a mouse model of severe spinal muscular atrophy. PLoS One 2012;7:e46353.

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Shababi M, Lorson CL, Rudnik-Schöneborn SS. Spinal muscular atrophy: a motor neuron disorder or a multi-organ disease? J Anat 2014;224:15-28.

    PubMed  CAS  Google Scholar 

  73. Hua Y, Sahashi K, Rigo F, et al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 2011;478:123-126.

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Guy J, Gan J, Selfridge J, Cobb S, Bird A. Reversal of neurological defects in a mouse model of Rett syndrome. Science 2007;104:2709-2714.

    Google Scholar 

  75. McGraw CM, Samaco RC, Zoghbi HY. Adult neural function requires MeCP2. Science 2011;833:186.

    Google Scholar 

  76. Yamamoto A, Lucas JJ, Hen R. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 2000;101:57-66.

    PubMed  CAS  Google Scholar 

  77. Kordasiewicz HB, Stanek LM, Wancewicz EV, et al. Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis. Neuron 2012;74:1031-1044.

    PubMed  CAS  PubMed Central  Google Scholar 

  78. Le TT, McGovern VL, Alwine IE, et al. Temporal requirement for high SMN expression in SMA mice. Hum Mol Genet 2011;20:3578-3591.

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Lutz CM, Kariya S, Patruni S, et al. Post-symptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy. J Clin Invest 2011;8:3029-3041.

    Google Scholar 

  80. Foust KD, Wang X, McGovern VL, et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotech 2010;28:271-274.

    CAS  Google Scholar 

  81. Hao le T, Duy PQ, Jontes JD, et al. Temporal requirement for SMN in motoneuron development. Hum Mol Genet 2013;22:2612-2625.

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Kariya S, Obis T, Garone C, et al. Requirement of enhanced Survival Motoneuron protein imposed during neuromuscular junction maturation. J Clin Invest 2014;124:785-800.

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Gabanella F, Carissimi C, Usiello A, Pellizzoni. The activity of the spinal muscular atrophy protein is regulated during development and cellular differentiation. Hum Mol Genet 2005; 14:3629-3642.

    PubMed  CAS  Google Scholar 

  84. Oskoui M, Levy G, Garland CJ, et al. The changing natural history of spinal muscular atrophy type 1. Neurology 2007;69:1931-1936.

    PubMed  CAS  Google Scholar 

  85. Montes J, McIsaac TL, Dunaway S, et al. Falls and spinal muscular atrophy: exploring cause and prevention. Muscle Nerve 2013;47:118-123.

    PubMed  Google Scholar 

  86. Echaniz-Laguna A, Bousiges O, Loeffler JP, Boutillier AL. Histone deacetylase inhibitors: therapeutic agents and research tools for deciphering motor neuron diseases. Curr Med Chem 2008;15:1263-1273.

    PubMed  CAS  Google Scholar 

  87. Chen TH, Chang JG, Yang YH, et al. Randomized, double-blind, placebo-controlled trial of hydroxyurea in spinal muscular atrophy. Neurology 2010;75:2190-2197.

    PubMed  CAS  Google Scholar 

  88. Mercuri E, Bertini E, Messina S, et al. Pilot trial of phenylbutyrate in spinal muscular atrophy. Neuromusc Disord 2004;14:130-135.

    PubMed  Google Scholar 

  89. Mercuri E, Bertini E, Messina S, et al. Randomized, double-blind, placebo-controlled trial of phenylbutyrate in spinal muscular atrophy. Neurology 2007;68:51-55.

    PubMed  CAS  Google Scholar 

  90. Swoboda KJ, Scott CB, Reyna SP, et al. Phase II open label study of valproic acid in spinal muscular atrophy. PLoS One 2009;4:e5268.

    PubMed  PubMed Central  Google Scholar 

  91. Avila AM, Burnett BG, Taye AA, et al. Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J Clin Invest 2007;117:659-671

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Garbes L, Riessland M, Hölker I, et al. LBH589 induces up to 10-fold SMN protein levels by several independent mechanisms and is effective even in cells from SMA patients non-responsive to valproate. Hum Mol Genet 2009;18:3645-3658.

    PubMed  CAS  Google Scholar 

  93. Kwon DY, Motley WW, Fischbeck KH, Burnett BG. Increasing expression and decreasing degradation of SMN ameliorate the spinal muscular atrophy phenotype in mice. Hum Mol Genet 2011;20:3667-3677.

    PubMed  CAS  PubMed Central  Google Scholar 

  94. Naryshkin N, Narasimhan J, Dakka A, et al. Small molecule compounds correct alternative splicing of the SMN2 gene and restore SMN protein expression and function. Neuromusc Dis 2012;22:848.

    Google Scholar 

  95. Butchbach ME, Singh J, Thorsteinsdóttir M, et al. Effects of 2,4-diaminoquinazoline derivatives on SMN expression and phenotype in a mouse model for spinal muscular atrophy. Hum Mol Genet 2010;19:454-467.

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Hua Y, Sahashi K, Rigo F, et al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 2011;478:123-126.

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Porensky PN, Mitrpant C, McGovern, et al. A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet 2012;21:1625-1638.

    PubMed  CAS  PubMed Central  Google Scholar 

  98. Rigo F, Chun SJ, Norris DA, et al. Pharmacology of a central nervous system delivered 2’-o-methoxyethyl-modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates. J Pharmacol Exp Ther 2014;350:46-55.

    PubMed  CAS  Google Scholar 

  99. Mattis VB, Ebert AD, Fosso MY, Chang CW, Lorson CL. Delivery of a read-through inducing compound, TC007, lessens the severity of a spinal muscular atrophy animal model. Hum Mol Genet 2009;18:3906-3913.

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Bordet T, Buisson B, Michaud M, et al. Identification and characterization of cholest-4-en-3-one, oxime (TRO19622), a novel drug candidate for amyotrophic lateral sclerosis. J Pharmacol Exp Ther 2007;322:709-720.

    PubMed  CAS  Google Scholar 

  101. Bowerman M, Murray LM, Boyer JG, Anderson CL, Kothary R. Fasudil improves survival and promotes skeletal muscle development in a mouse model of spinal muscular atrophy. BMC Med 2012;10:24

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Foust KD, Nurre E, Montgomery CL, et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotech 2009;27:59-65.

    CAS  Google Scholar 

  103. Valori CF, Ning K, Wyles M, et al. Systemic Delivery of scAAV9 Expressing SMN Prolongs Survival in a Model of Spinal Muscular Atrophy. Sci Transl Med 2010; 2:35ra42.

    PubMed  Google Scholar 

  104. Dominguez E, Marais T, Chatauret N, et al. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum Mol Genet 2011;20:681-693.

    PubMed  CAS  Google Scholar 

  105. Gowing G, Svendsen, CN. Stem cell transplantation for motor neuron disease: current approaches and future perspectives. Neurotherapeutics 2011;8:591-606.

    PubMed  PubMed Central  Google Scholar 

  106. Corti S, Nizzardo M, Nardini M, et al. Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy. J Clin Invest 2008;118:3316-3330.

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Yamazaki T, Chen S, Yu Y, et al. FUS-SMN protein interactions link the motor neuron diseases ALS and SMA. Cell Rep 2012;2:799-806.

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Kariya S, Re D, Jacquier A, et al. Mutant superoxide dismutase 1 (SOD1), a cause of amyotrophic lateral sclerosis, disrupts the recruitment of SMN, the spinal muscular atrophy protein to nuclear Cajal bodies. Hum Mol Genet 2012;21:3421-3434.

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Tsuiji H, Iguchi Y, Furuya A, et al. Spliceosome integrity is defective in the motor neuron diseases ALS and SMA. EMBO Mol Med 2013;5:221-234.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. S. Kariya and R. Finkel for the data presented in Fig. 1. We apologize to those of our colleagues whose original work could not be directly cited in the review. Research on SMA in the Monani laboratory is supported by MDA-USA, SMA-Europe, the Motor Neuron Center, Columbia University, Department of Defense (W81XWH-11-1-0753), and National Institutes of Health R01NS057482.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umrao R. Monani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awano, T., Kim, JK. & Monani, U.R. Spinal Muscular Atrophy: Journeying From Bench to Bedside. Neurotherapeutics 11, 786–795 (2014). https://doi.org/10.1007/s13311-014-0293-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-014-0293-y

Keywords

Navigation