Skip to main content
Log in

Applicability of Histone Deacetylase Inhibition for the Treatment of Spinal Muscular Atrophy

  • Review
  • Published:
Neurotherapeutics

Abstract

Spinal muscular atrophy (SMA), a neurodegenerative disease with potentially devastating and even deadly effects on affected individuals, was first described in the late nineteenth century. Although the survival of motor neuron (SMN) gene was identified nearly 2 decades ago to be causative of the disease, neither an effective treatment nor a cure are currently available. Yet efforts are on-going to test a multitude of treatment strategies with the potential to alleviate disease symptoms in human and clinical trials. Among the most studied compounds for the treatment of SMA are histone deacetylase inhibitors. Several of these epigenetic modifiers have been shown to increase expression of the crucial SMN gene in vitro and in vivo, an effect linked to increased histone acetylation and remodeling of the chromatin landscape surrounding the SMN gene promoter. Here, we review the history and current state of use of histone deacetylase inhibitors in SMA, as well as the success of clinical trials investigating the clinical applicability of these epigenetic modifiers in SMA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Loscher W. Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs 2002;16:669–694.

    PubMed  Google Scholar 

  2. Pearn J. Classification of spinal muscular atrophies. Lancet 1980;1:919–922.

    PubMed  CAS  Google Scholar 

  3. Perucca E. Pharmacological and therapeutic properties of valproate: a summary after 35 years of clinical experience. CNS Drugs 2002;16:695–714.

    PubMed  CAS  Google Scholar 

  4. Feldkotter M, Schwarzer V, Wirth R, Wienker TF, Wirth B. Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 2002;70:358–368.

    PubMed  CAS  Google Scholar 

  5. Kugelberg E, Welander L. Heredofamilial juvenile muscular atrophy simulating muscular dystrophy. AMA Arch Neurol Psychiatry 1956;75:500–509.

    PubMed  CAS  Google Scholar 

  6. Andreassi C, Angelozzi C, Tiziano FD, et al. Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy. Eur J Hum Genet 2004;12:59–65.

    PubMed  CAS  Google Scholar 

  7. Munsat TL, Davies KE. International SMA consortium meeting (26–28 June 1992, Bonn, Germany). Neuromuscul Disord 1992;2:423–428.

    PubMed  CAS  Google Scholar 

  8. Hahnen E, Eyüpoglu IY, Brichta L, et al. In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy. J Neurochem 2006;98:193–202.

    PubMed  CAS  Google Scholar 

  9. Riessland M, Brichta L, Hahnen E, Wirth B. The benzamide M344, a novel histone deacetylase inhibitor, significantly increases SMN2 RNA/protein levels in spinal muscular atrophy cells. Hum Genet 2006;120:101–110.

    PubMed  CAS  Google Scholar 

  10. Riessland M, Ackermann B, Förster A, et al. SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy. Hum Mol Genet 2010;19:1492–1506.

    PubMed  CAS  Google Scholar 

  11. Avila AM, Burnett BG, Taye AA, et al. Trichostatin A increases SMN expression and survival in a mouse model of spinal muscular atrophy. J Clin Invest 2007;117:659–671.

    PubMed  CAS  Google Scholar 

  12. Darras BT, Kang PB. Clinical trials in spinal muscular atrophy. Curr Opin Pediatr 2007;19:675–679.

    PubMed  Google Scholar 

  13. Swoboda KJ, Kissel JT, Crawford TO, et al. Perspectives on clinical trials in spinal muscular atrophy. J Child Neurol 2007;22:957–966.

    PubMed  Google Scholar 

  14. Khan N, Jeffers M, Kumar S, et al. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J 2008;409:581–589.

    PubMed  CAS  Google Scholar 

  15. Garbes L, Riessland M, Hölker I, et al. LBH589 induces up to 10-fold SMN protein levels by several independent mechanisms and is effective even in cells from SMA patients non-responsive to valproate. Hum Mol Genet 2009;18:3645–3658.

    PubMed  CAS  Google Scholar 

  16. Kolb SJ, Kissel JT. Spinal muscular atrophy: a timely review. Arch Neurol 2011;68:979–984.

    PubMed  Google Scholar 

  17. Lewelt A, Newcomb TM, Swoboda KJ. New therapeutic approaches to spinal muscular atrophy. Curr Neurol Neurosci Rep 2012;12:42–53.

    PubMed  CAS  Google Scholar 

  18. Hamilton G, Gillingwater T. Spinal muscular atrophy: going beyond the motor neuron. Trends Mol Med 2013;19:40–50.

    PubMed  CAS  Google Scholar 

  19. Melki J, Sheth P, Abdelhak S, et al. Mapping of acute (type I) spinal muscular atrophy to chromosome 5q12-q14. The French Spinal Muscular Atrophy Investigators. Lancet 1990;336:271–273.

    PubMed  CAS  Google Scholar 

  20. Brzustowicz LM, Lehner T, Castilla LH, et al. Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2-13.3. Nature 1990;344:540–541.

    PubMed  CAS  Google Scholar 

  21. Melki J, Burlet P, Clermont O, et al. Refined linkage map of chromosome 5 in the region of the spinal muscular atrophy gene. Genomics 1993;15:521–524.

    PubMed  CAS  Google Scholar 

  22. Wirth B, el-Agwany A, Baasner A, et al. Mapping of the spinal muscular atrophy (SMA) gene to a 750-kb interval flanked by two new microsatellites. Eur J Hum Genet 1995;3:56–60.

    PubMed  CAS  Google Scholar 

  23. Wirth B, Hahnen E, Morgan K, et al. Allelic association and deletions in autosomal recessive proximal spinal muscular atrophy: association of marker genotype with disease severity and candidate cDNAs. Hum Mol Genet 1995;4:1273–1284.

    PubMed  CAS  Google Scholar 

  24. Lefebvre S, Burglen L, Reboullet S, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995;80:155–165.

    PubMed  CAS  Google Scholar 

  25. Roy N, Mahadevan MS, McLean M, et al. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 1995;80:167–178.

    PubMed  CAS  Google Scholar 

  26. Thompson TG, DiDonato CJ, Simard LR, et al. A novel cDNA detects homozygous microdeletions in greater than 50% of type I spinal muscular atrophy patients. Nat Genet 1995;9:56–62.

    PubMed  CAS  Google Scholar 

  27. Cobben JM, van der Steege G, Grootscholten P, de Visser M, Scheffer H, Buys CH. Deletions of the survival motor neuron gene in unaffected siblings of patients with spinal muscular atrophy. Am J Hum Genet 1995;57:805–808.

    PubMed  CAS  Google Scholar 

  28. DiDonato CJ, Ingraham SE, Mendell JR, et al. Deletion and conversion in spinal muscular atrophy patients: is there a relationship to severity? Ann Neurol 1997;41:230–237.

    PubMed  CAS  Google Scholar 

  29. Hahnen E, Forkert R, Marke C, et al. Molecular analysis of candidate genes on chromosome 5q13 in autosomal recessive spinal muscular atrophy: evidence of homozygous deletions of the SMN gene in unaffected individuals. Hum Mol Genet 1995;4:1927–1933.

    PubMed  CAS  Google Scholar 

  30. Matthijs G, Schollen E, Legius E, et al. Unusual molecular findings in autosomal recessive spinal muscular atrophy. J Med Genet 1996;33:469–474.

    PubMed  CAS  Google Scholar 

  31. Rodrigues NR, Owen N, Talbot K, Ignatius J, Dubowitz V, Davies KE. Deletions in the survival motor neuron gene on 5q13 in autosomal recessive spinal muscular atrophy. Hum Mol Genet 1995;4:631–634.

    PubMed  CAS  Google Scholar 

  32. Velasco E, Valero C, Valero A, Moreno F, Hernandez-Chico C. Molecular analysis of the SMN and NAIP genes in Spanish spinal muscular atrophy (SMA) families and correlation between number of copies of cBCD541 and SMA phenotype. Hum Mol Genet 1996;5:257–263.

    PubMed  CAS  Google Scholar 

  33. Parsons DW, McAndrew PE, Iannaccone ST, Mendell JR, Burghes AH, Prior TW. Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number. Am J Hum Genet 1998;63:1712–1723.

    PubMed  CAS  Google Scholar 

  34. Wirth B, Herz M, Wetter A, et al. Quantitative analysis of survival motor neuron copies: identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implications for genetic counseling. Am J Hum Genet 1999;64:1340–1356.

    PubMed  CAS  Google Scholar 

  35. Schrank B, Götz R, Gunnersen JM, et al. Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci USA 1997;94:9920–9925.

    PubMed  CAS  Google Scholar 

  36. McAndrew PE, Parsons DW, Simard LR, et al. Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number. Am J Hum Genet 1997;60:1411–1422.

    PubMed  CAS  Google Scholar 

  37. Chen Q, Baird SD, Mahadevan M, et al. Sequence of a 131-kb region of 5q13.1 containing the spinal muscular atrophy candidate genes SMN and NAIP. Genomics 1998;48:121–127.

    PubMed  CAS  Google Scholar 

  38. Lorson CL, Hahnen E, Androphy EJ, Wirth B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci USA 1999;96:6307–6311.

    PubMed  CAS  Google Scholar 

  39. Gennarelli M, Lucarelli M, Capon F, et al. Survival motor neuron gene transcript analysis in muscles from spinal muscular atrophy patients. Biochem Biophys Res Commun 1995;213:342–348.

    PubMed  CAS  Google Scholar 

  40. Lorson CL, Strasswimmer J, Yao JM, et al. SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet 1998;19:63–66.

    PubMed  CAS  Google Scholar 

  41. Coovert DD, Le TT, McAndrew PE, et al. The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet 1997;6:1205–1214.

    PubMed  CAS  Google Scholar 

  42. Lefebvre S, Burlet P, Liu Q, et al. Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 1997;16:265–269.

    PubMed  CAS  Google Scholar 

  43. Helmken C, Hofmann Y, Schoenen F, et al. Evidence for a modifying pathway in SMA discordant families: reduced SMN level decreases the amount of its interacting partners and Htra2-beta1. Hum Genet 2003;114:11–21.

    PubMed  CAS  Google Scholar 

  44. van Bergeijk J, Rydel-Konecke K, Grothe C, Claus P. The spinal muscular atrophy gene product regulates neurite outgrowth: importance of the C terminus. FASEB J 2007;21:1492–1502.

    PubMed  Google Scholar 

  45. Burghes AH. When is a deletion not a deletion? When it is converted. Am J Hum Genet 1997;61:9–15.

    PubMed  CAS  Google Scholar 

  46. Campbell L, Potter A, Ignatius J, Dubowitz V, Davies K. Genomic variation and gene conversion in spinal muscular atrophy: implications for disease process and clinical phenotype. Am J Hum Genet 1997;61:40–50.

    PubMed  CAS  Google Scholar 

  47. Wirth B, Brichta L, Schrank B, et al. Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum Genet 2006;119:422–428.

    PubMed  CAS  Google Scholar 

  48. Wang CH, Finkel RS, Bertini ES, et al. Consensus statement for standard of care in spinal muscular atrophy. J Child Neurol 2007;22:1027–1049.

    PubMed  Google Scholar 

  49. Hastings ML, Berniac J, Liu YH, et al. Tetracyclines that promote SMN2 exon 7 splicing as therapeutics for spinal muscular atrophy. Sci Transl Med 2009;1:5ra12.

    PubMed  Google Scholar 

  50. Chen T-H, Chang JG, Yang Y-H, et al. Randomized, double-blind, placebo-controlled trial of hydroxyurea in spinal muscular atrophy. Neurology 2010;75:2190–2197.

    PubMed  CAS  Google Scholar 

  51. Liang W-C, Yuo C-Y, Chang J-G, et al. The effect of hydroxyurea in spinal muscular atrophy cells and patients. J Neurol Sci 2008;268:87–94.

    PubMed  CAS  Google Scholar 

  52. Kinali M, Mercuri E, Main M, et al. Pilot trial of albuterol in spinal muscular atrophy. Neurology 2002;59:609–610.

    PubMed  CAS  Google Scholar 

  53. Tiziano FD, Lomastro R, Pinto AM, et al. Salbutamol increases survival motor neuron (SMN) transcript levels in leucocytes of spinal muscular atrophy (SMA) patients: relevance for clinical trial design. J Med Genet 2010;47:856–858.

    PubMed  CAS  Google Scholar 

  54. Baughan TD, Dickson A, Osman EY, Lorson CL. Delivery of bifunctional RNAs that target an intronic repressor and increase SMN levels in an animal model of spinal muscular atrophy. Hum Mol Genet 2009;18:1600–1611.

    PubMed  CAS  Google Scholar 

  55. Coady TH, Shababi M, Tullis GE, Lorson CL. Restoration of SMN function: delivery of a trans-splicing RNA re-directs SMN2 pre-mRNA splicing. Mol Ther 2007;15:1471–1478.

    PubMed  CAS  Google Scholar 

  56. Dickson A, Osman E, Lorson C. A negatively-acting bifunctional RNA increases survival motor neuron in vitro and in vivo. Hum Gene Ther 2008;19:1307–1315.

    PubMed  CAS  Google Scholar 

  57. Hua Y, Vickers TA, Baker BF, Bennett CF, Krainer AR. Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol 2007;5:e73.

    PubMed  Google Scholar 

  58. Madocsai C, Lim SR, Geib T, Lam BJ, Hertel KJ. Correction of SMN2 Pre-mRNA splicing by antisense U7 small nuclear RNAs. Mol Ther 2005;12:1013–1022.

    PubMed  CAS  Google Scholar 

  59. Marquis J, Meyer K, Angehrn L, Kampfer SS, Rothen-Rutishauser B, Schumperli D. Spinal muscular atrophy: SMN2 pre-mRNA splicing corrected by a U7 snRNA derivative carrying a splicing enhancer sequence. Mol Ther 2007;15:1479–1486.

    PubMed  CAS  Google Scholar 

  60. Passini MA, Bu J, Richards AM, et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med 2011;3:72ra18.

    PubMed  Google Scholar 

  61. Hua Y, Sahashi K, Rigo F, et al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 2011;478:123–126.

    PubMed  CAS  Google Scholar 

  62. Foust KD, Wang X, McGovern VL, et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol 2010;28:271–274.

    PubMed  CAS  Google Scholar 

  63. Valori CF, Ning K, Wyles M, et al. Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy. Sci Transl Med 2010;2:35ra42.

    PubMed  Google Scholar 

  64. Azzouz M, Le T, Ralph GS, et al. Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy. J Clin Invest 2004;114:1726–1731.

    PubMed  CAS  Google Scholar 

  65. Families of SMA and nationwide children’s announce multi-million dollar award from NINDS to advance CNS gene therapy for spinal muscular atrophy. Available at: http://www.fsma.org/LatestNews/index.cfm?ID=7638&TYPE=1150. Accessed 7 Aug 2013.

  66. FightSMA: history of gene therapy. Available at: http://www.fightsma.org/sma-research/gene-therapy/gene_therapy_history/. Accessed 7 Aug 2013.

  67. Corti S, Nizzardo M, Simone C, et al. Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med 2012;4:165ra162.

    PubMed  Google Scholar 

  68. Lunn JS, Sakowski SA, Federici T, Glass JD, Boulis NM, Feldman EL. Stem cell technology for the study and treatment of motor neuron diseases. Regen Med 2011;6:201–213.

    PubMed  Google Scholar 

  69. La Bella V, Cisterni C, Salaun D, Pettmann B. Survival motor neuron (SMN) protein in rat is expressed as different molecular forms and is developmentally regulated. Eur J Neurosci 1998;10:2913–2923.

    PubMed  Google Scholar 

  70. Kernochan LE, Russo ML, Woodling NS, et al. The role of histone acetylation in SMN gene expression. Hum Mol Genet 2005;14:1171–1182.

    PubMed  CAS  Google Scholar 

  71. Battaglia G, Princivalle A, Forti F, Lizier C, Zeviani M. Expression of the SMN gene, the spinal muscular atrophy determining gene, in the mammalian central nervous system. Hum Mol Genet 1997;6:1961–1971.

    PubMed  CAS  Google Scholar 

  72. Burlet P, Huber C, Bertrandy S, et al. The distribution of SMN protein complex in human fetal tissues and its alteration in spinal muscular atrophy. Hum Mol Genet 1998;7:1927–1933.

    PubMed  CAS  Google Scholar 

  73. Jablonka S, Schrank B, Kralewski M, Rossoll W, Sendtner M. Reduced survival motor neuron (Smn) gene dose in mice leads to motor neuron degeneration: an animal model for spinal muscular atrophy type III. Hum Mol Genet 2000;9:341–346.

    PubMed  CAS  Google Scholar 

  74. Boda B, Mas C, Giudicelli C, et al. Survival motor neuron SMN1 and SMN2 gene promoters: identical sequences and differential expression in neurons and non-neuronal cells. Eur J Hum Genet 2004;12:729–737.

    PubMed  CAS  Google Scholar 

  75. Kiefer JC. Epigenetics in development. Dev Dyn 2007;236:1144–1156.

    PubMed  CAS  Google Scholar 

  76. Germain-Desprez D, Brun T, Rochette C, Semionov A, Rouget R, Simard LR. The SMN genes are subject to transcriptional regulation during cellular differentiation. Gene 2001;279:109–117.

    PubMed  CAS  Google Scholar 

  77. Chang JG, Hsieh-Li HM, Jong YJ, Wang NM, Tsai CH, Li H. Treatment of spinal muscular atrophy by sodium butyrate. Proc Natl Acad Sci USA 2001;98:9808–9813.

    PubMed  CAS  Google Scholar 

  78. Pellizzaro C, Coradini D, Morel S, Ugazio E, Gasco MR, Daidone MG. Cholesteryl butyrate in solid lipid nanospheres as an alternative approach for butyric acid delivery. Anticancer Res 1999;19:3921–3925.

    PubMed  CAS  Google Scholar 

  79. Brichta L, Hofmann Y, Hahnen E, et al. Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet 2003;12:2481–2489.

    PubMed  CAS  Google Scholar 

  80. Sumner CJ, Huynh TN, Markowitz JA, et al. Valproic acid increases SMN levels in spinal muscular atrophy patient cells. Ann Neurol 2003;54:647–654.

    PubMed  CAS  Google Scholar 

  81. Andreassi C, Angelozzi C, Tiziano FD, et al. Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy. Eur J Hum Genet 2003;12:59–65.

    Google Scholar 

  82. Workman JL, Kingston RE. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 1998;67:545–579.

    PubMed  CAS  Google Scholar 

  83. Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell 2007;128:707–719.

    PubMed  CAS  Google Scholar 

  84. Kernochan LE, Russo ML, Woodling NS, et al. The role of histone acetylation in SMN gene expression. Hum Mol Genet 2005;14:1171–1182.

    PubMed  CAS  Google Scholar 

  85. Evans MC, Cherry JJ, Androphy EJ. Differential regulation of the SMN2 gene by individual HDAC proteins. Biochem Biophys Res Commun 2011;414:25–30.

    PubMed  CAS  Google Scholar 

  86. Nightingale KP, Gendreizig S, White DA, Bradbury C, Hollfelder F, Turner BM. Cross-talk between histone modifications in response to histone deacetylase inhibitors: MLL4 links histone H3 acetylation and histone H3K4 methylation. J Biol Chem 2007;282:4408–4416.

    PubMed  CAS  Google Scholar 

  87. Harikrishnan KN, Karagiannis TC, Chow MZ, El-Osta A. Effect of valproic acid on radiation-induced DNA damage in euchromatic and heterochromatic compartments. Cell Cycle 2008;7:468–476.

    PubMed  CAS  Google Scholar 

  88. Bradbury CA, Khanim FL, Hayden R, et al. Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia 2005;19:1751–1759.

    PubMed  CAS  Google Scholar 

  89. Milutinovic S, D'Alessio AC, Detich N, Szyf M. Valproate induces widespread epigenetic reprogramming which involves demethylation of specific genes. Carcinogenesis 2007;28:560–571.

    PubMed  CAS  Google Scholar 

  90. Ou JN, Torrisani J, Unterberger A, et al. Histone deacetylase inhibitor Trichostatin A induces global and gene-specific DNA demethylation in human cancer cell lines. Biochem. Pharmacol 2007;73:1297–1307.

    PubMed  CAS  Google Scholar 

  91. Detich N, Bovenzi V, Szyf M. Valproate induces replication-independent active DNA demethylation. J Biol Chem 2003;278:27586–27592.

    PubMed  CAS  Google Scholar 

  92. Cervoni N, Szyf M. Demethylase activity is directed by histone acetylation. J Biol Chem 2001;276:40778–40787.

    PubMed  CAS  Google Scholar 

  93. Cervoni N, Detich N, Seo SB, Chakravarti D, Szyf M. The oncoprotein Set/TAF-1beta, an inhibitor of histone acetyltransferase, inhibits active demethylation of DNA, integrating DNA methylation and transcriptional silencing. J Biol Chem 2002;277:25026–25031.

    PubMed  CAS  Google Scholar 

  94. Lee J-S, Smith E, Shilatifard A. The language of histone crosstalk. Cell 2010;142:682–685.

    PubMed  CAS  Google Scholar 

  95. Verrier L, Vandromme M, Trouche D. Histone demethylases in chromatin cross-talks. Biol. Cell 2011;103:381–401.

    PubMed  CAS  Google Scholar 

  96. Suganuma T, Workman JL. Crosstalk among histone modifications. Cell 2008;135:604–607.

    PubMed  CAS  Google Scholar 

  97. Wlodarczyk BC, Craig JC, Bennett GD, Calvin JA, Finnell RH. Valproic acid-induced changes in gene expression during neurulation in a mouse model. Teratology 1996;54:284–297.

    PubMed  CAS  Google Scholar 

  98. Arinze IJ, Kawai Y. Sp family of transcription factors is involved in valproic acid-induced expression of Galphai2. J Biol Chem 2003;278:17785–17791.

    PubMed  CAS  Google Scholar 

  99. Chang JG, Hsieh-Li HM, Jong YJ, Wang NM, Tsai CH, Li H. Treatment of spinal muscular atrophy by sodium butyrate. Proc Natl Acad Sci USA 2001;98:9808–9813.

    PubMed  CAS  Google Scholar 

  100. Hofmann Y, Lorson CL, Stamm S, Androphy EJ, Wirth B. Htra2-beta 1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). Proc Natl Acad Sci USA 2000;97:9618–9623.

    PubMed  CAS  Google Scholar 

  101. Peart MJ, Smyth GK, van Laar RK, et al. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci USA 2005;102:3697–3702.

    PubMed  CAS  Google Scholar 

  102. Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 2006;6:38–51.

    PubMed  CAS  Google Scholar 

  103. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006;5:769–784.

    PubMed  CAS  Google Scholar 

  104. Piepers S, Cobben J-M, Sodaar P, et al. Quantification of SMN protein in leucocytes from spinal muscular atrophy patients: effects of treatment with valproic acid. J Neurol Neurosurg Psychiatr 2011;82:850–852.

    PubMed  Google Scholar 

  105. Brichta L, Hölker I, Haug K, Klockgether T, Wirth B. In vivo activation of SMN in spinal muscular atrophy carriers and patients treated with valproate. Ann Neurol 2006;59:970–975.

    PubMed  CAS  Google Scholar 

  106. Tsai LK, Yang C-C, Hwu W-L, Li H. Valproic acid treatment in six patients with spinal muscular atrophy. Eur J Neurol 2007;14:e8-9.

    PubMed  Google Scholar 

  107. Weihl CC, Connolly AM, Pestronk A. Valproate may improve strength and function in patients with type III/IV spinal muscle atrophy. Neurology 2006;67:500–501.

    PubMed  CAS  Google Scholar 

  108. Kissel JT, Scott CB, Reyna SP, et al. SMA CARNIVAL TRIAL PART II: a prospective, single-armed trial of L-carnitine and valproic acid in ambulatory children with spinal muscular atrophy. PLoS ONE 2011;6:e21296.

    PubMed  CAS  Google Scholar 

  109. Swoboda KJ, Scott CB, Crawford TO, et al. SMA CARNI-VAL trial part I: double-blind, randomized, placebo-controlled trial of L-carnitine and valproic acid in spinal muscular atrophy. PLoS ONE 2010;5:e12140.

    PubMed  Google Scholar 

  110. Brahe C, Vitali T, Tiziano FD, et al. Phenylbutyrate increases SMN gene expression in spinal muscular atrophy patients. Eur J Hum Genet 2004;13:256–259.

    Google Scholar 

  111. Mercuri E, Bertini E, Messina S, et al. Pilot trial of phenylbutyrate in spinal muscular atrophy. Neuromuscul Disord 2004;14:130–135.

    PubMed  Google Scholar 

  112. Mercuri E, Bertini E, Messina S, et al. Randomized, double-blind, placebo-controlled trial of phenylbutyrate in spinal muscular atrophy. Neurology 2007;68:51–55.

    PubMed  CAS  Google Scholar 

  113. Markowitz JA, Singh P, Darras BT. Spinal muscular atrophy: a clinical and research update. Pediatr Neurol 2012;46:1–12.

    PubMed  Google Scholar 

  114. Swoboda KJ, Scott CB, Reyna SP, et al. Phase II open label study of valproic acid in spinal muscular atrophy. PLoS ONE 2009;4:e5268.

    PubMed  Google Scholar 

  115. Wlodarczyk BC, Craig JC, Bennett GD, Calvin JA, Finnell RH. Valproic acid-induced changes in gene expression during neurulation in a mouse model. Teratology 1996;54:284–297.

    PubMed  CAS  Google Scholar 

  116. Arinze IJ, Kawai Y. Sp family of transcription factors is involved in valproic acid-induced expression of Galphai2. J Biol Chem 2003;278:17785–17791.

    PubMed  CAS  Google Scholar 

  117. Hauke J, Riessland M, Lunke S, et al. Survival motor neuron gene 2 silencing by DNA methylation correlates with spinal muscular atrophy disease severity and can be bypassed by histone deacetylase inhibition. Hum Mol Genet 2009;18:304–317.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge grant and fellowship support from the National Health and Medical Research Council (NHMRC) and the National Heart Foundation of Australia (NHF). S.L. was awarded a Monash Graduate Scholarship and A.E-O. is NHMRC Senior Research Fellows. Supported in part by the Victorian Government’s Operational Infrastructure Support program.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assam El-Osta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 123 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lunke, S., El-Osta, A. Applicability of Histone Deacetylase Inhibition for the Treatment of Spinal Muscular Atrophy. Neurotherapeutics 10, 677–687 (2013). https://doi.org/10.1007/s13311-013-0209-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-013-0209-2

Keywords

Navigation