Skip to main content
Log in

Epigenetics and the Modulation of Neuroinflammation

  • Review
  • Published:
Neurotherapeutics

Abstract

Innate immune responses in the central nervous system (CNS) have key roles influencing both physiological and pathological processes. Microglia are innate immune effector cells that reside within the CNS. These inflammatory cells are constantly surveying their external environment and rapidly respond to a variety of molecules that signal changes in CNS homeostasis. In response to these signals, microglia influence neuronal connections, modulate the functions of other glia, and mediate inflammatory responses to disease or injury. In parallel with the regulation of inflammatory responses outside of the CNS, investigators have observed that microglia are capable of heterogeneous responses to exogenous and endogenous signals. While much of this molecular and morphological heterogeneity is regulated by gene transcription, there is ample evidence that microglial behavior is determined, in part, by epigenetic regulation. Recent work has demonstrated that processes involving DNA methylation, histone modification, and noncoding RNAs also have important roles in modulating neuroinflammation. Here I will review the evidence supporting a role for epigenetic regulation of neuroinflammation and describe how this might influence the outcome of several CNS disorders, including addiction, infection, multiple sclerosis, and stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ono K, Takii T, Onozaki K, Ikawa M, Okabe M, Sawada M. Migration of exogenous immature hematopoietic cells into adult mouse brain parenchyma under GFP-expressing bone marrow chimera. Biochem Biophys Res Commun 1999;262:610–614.

    Article  PubMed  CAS  Google Scholar 

  2. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 2007;10:1538–1543.

    Article  PubMed  CAS  Google Scholar 

  3. Schulz C, Gomez Perdiguero E, Chorro L, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012;336:86–90.

    Article  PubMed  CAS  Google Scholar 

  4. Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010;330:841–845.

    Article  PubMed  CAS  Google Scholar 

  5. Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One 2011;6:e26317.

    Article  PubMed  CAS  Google Scholar 

  6. Schafer DP, Lehrman EK, Kautzman AG, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012;74:691–705.

    Article  PubMed  CAS  Google Scholar 

  7. Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic pruning by microglia is necessary for normal brain development. Science 2011;333:1456–1458.

    Article  PubMed  CAS  Google Scholar 

  8. Davalos D, Grutzendler J, Yang G, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005;8:752–758.

    Article  PubMed  CAS  Google Scholar 

  9. Garden GA, Moller T. Microglia biology in health and disease. J Neuroimmune Pharmacol 2006;1:127–137.

    Article  PubMed  Google Scholar 

  10. Boche D, Perry VH, Nicoll JA. Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 2012;39:3–18.

    Article  Google Scholar 

  11. Colton CA. Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 2009;4:399–418.

    Article  PubMed  Google Scholar 

  12. Jayadev S, Nesser NK, Hopkins S, et al. Transcription factor p53 influences microglial activation phenotype. Glia 2011;59:1402–1413.

    Article  PubMed  Google Scholar 

  13. Jayadev S, Case A, Eastman AJ, et al. Presenilin 2 is the predominant gamma-secretase in microglia and modulates cytokine release. PLoS One 2011;5:e15743.

    Article  Google Scholar 

  14. Saijo K, Winner B, Carson CT, et al. A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 2009;137:47–59.

    Article  PubMed  CAS  Google Scholar 

  15. Byun CJ, Seo J, Jo SA, et al. DNA methylation of the 5'-untranslated region at +298 and +351 represses BACE1 expression in mouse BV-2 microglial cells. Biochem Biophys Res Commun 2011;417:387–392.

    Article  PubMed  Google Scholar 

  16. Lin HC, Hsieh HM, Chen YH, Hu ML. S-Adenosylhomocysteine increases beta-amyloid formation in BV-2 microglial cells by increased expressions of beta-amyloid precursor protein and presenilin 1 and by hypomethylation of these gene promoters. Neurotoxicology 2009;30:622–627.

    Article  PubMed  CAS  Google Scholar 

  17. Schwarz JM, Hutchinson MR, Bilbo SD. Early-life experience decreases drug-induced reinstatement of morphine CPP in adulthood via microglial-specific epigenetic programming of anti-inflammatory IL-10 expression. J Neurosci 2011;31:17835–17847.

    Article  PubMed  CAS  Google Scholar 

  18. Uddin M, Koenen KC, Aiello AE, Wildman DE, de los Santos R, Galea S. Epigenetic and inflammatory marker profiles associated with depression in a community-based epidemiologic sample. Psychol Med 2010;41:997–1007.

    Article  PubMed  Google Scholar 

  19. Halili MA, Andrews MR, Sweet MJ, Fairlie DP. Histone deacetylase inhibitors in inflammatory disease. Curr Top Med Chem 2009;9:309–319.

    Article  PubMed  CAS  Google Scholar 

  20. Chen PS, Wang CC, Bortner CD, et al. Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induced dopaminergic neurotoxicity. Neuroscience 2007;149:203–212.

    Article  PubMed  CAS  Google Scholar 

  21. Xuan A, Long D, Li J, et al. Neuroprotective effects of valproic acid following transient global ischemia in rats. Life Sci 2012;90:463–468.

    Article  PubMed  CAS  Google Scholar 

  22. Leng Y, Liang MH, Ren M, Marinova Z, Leeds P, Chuang DM. Synergistic neuroprotective effects of lithium and valproic acid or other histone deacetylase inhibitors in neurons: roles of glycogen synthase kinase-3 inhibition. J Neurosci 2008;28:2576–2588.

    Article  PubMed  CAS  Google Scholar 

  23. Langley B, D'Annibale MA, Suh K, et al. Pulse inhibition of histone deacetylases induces complete resistance to oxidative death in cortical neurons without toxicity and reveals a role for cytoplasmic p21(waf1/cip1) in cell cycle-independent neuroprotection. J Neurosci 2008;28:163–176.

    Article  PubMed  CAS  Google Scholar 

  24. Licciardi PV, Ververis K, Tang ML, El-Osta A, Karagiannis TC. Immunomodulatory effects of histone deacetylase inhibitors. Curr Mol Med 2012;13:640–647.

    Article  Google Scholar 

  25. Shuttleworth SJ, Bailey SG, Townsend PA. Histone Deacetylase inhibitors: new promise in the treatment of immune and inflammatory diseases. Curr Drug Targets 2010;11:1430–1438.

    Article  PubMed  CAS  Google Scholar 

  26. Faraco G, Pittelli M, Cavone L, et al. Histone deacetylase (HDAC) inhibitors reduce the glial inflammatory response in vitro and in vivo. Neurobiol Dis 2009;36:269–279.

    Article  PubMed  CAS  Google Scholar 

  27. Suh HS, Choi S, Khattar P, Choi N, Lee SC. Histone deacetylase inhibitors suppress the expression of inflammatory and innate immune response genes in human microglia and astrocytes. J Neuroimmune Pharmacol 2010;5:521–532.

    Article  PubMed  Google Scholar 

  28. Pratt BM, McPherson JM. TGF-beta in the central nervous system: potential roles in ischemic injury and neurodegenerative diseases. Cytokine Growth Factor Rev 1997;8:267–292.

    Article  PubMed  CAS  Google Scholar 

  29. Correa F, Mallard C, Nilsson M, Sandberg M. Activated microglia decrease histone acetylation and Nrf2-inducible anti-oxidant defence in astrocytes: restoring effects of inhibitors of HDACs, p38 MAPK and GSK3beta. Neurobiol Dis 2011;44:142–151.

    PubMed  CAS  Google Scholar 

  30. Chen SH, Wu HM, Ossola B, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, protects dopaminergic neurons from neurotoxin-induced damage. Br J Pharmacol 2011;165:494–505.

    Article  Google Scholar 

  31. Kim HJ, Rowe M, Ren M, Hong JS, Chen PS, Chuang DM. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 2007;321:892–901.

    Article  PubMed  CAS  Google Scholar 

  32. Faraco G, Cavone L, Chiarugi A. The therapeutic potential of HDAC inhibitors in the treatment of multiple sclerosis. Mol Med 2011;17:442–447.

    Article  PubMed  CAS  Google Scholar 

  33. Gray SG, Dangond F. Rationale for the use of histone deacetylase inhibitors as a dual therapeutic modality in multiple sclerosis. Epigenetics 2006;1:67–75.

    Article  PubMed  Google Scholar 

  34. Camelo S, Iglesias AH, Hwang D, et al. Transcriptional therapy with the histone deacetylase inhibitor trichostatin A ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol 2005;164:10–21.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang B, West EJ, Van KC, et al. HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats. Brain Res 2008;1226:181–191.

    Article  PubMed  CAS  Google Scholar 

  36. Shein NA, Grigoriadis N, Alexandrovich AG, et al. Histone deacetylase inhibitor ITF2357 is neuroprotective, improves functional recovery, and induces glial apoptosis following experimental traumatic brain injury. FASEB J 2009;23:4266–4275.

    Article  PubMed  CAS  Google Scholar 

  37. Lu WH, Wang CY, Chen PS, et al. Valproic acid attenuates microgliosis in injured spinal cord and purinergic P2X4 receptor expression in activated microglia. J Neurosci Res 2013;91:694–705.

    Article  PubMed  CAS  Google Scholar 

  38. Giorgini F, Moller T, Kwan W, et al. Histone deacetylase inhibition modulates kynurenine pathway activation in yeast, microglia, and mice expressing a mutant huntingtin fragment. J Biol Chem 2008;283:7390–7400.

    Article  PubMed  CAS  Google Scholar 

  39. Paschoal AR, Maracaja-Coutinho V, Setubal JC, Simoes ZL, Verjovski-Almeida S, Durham AM. Non-coding transcription characterization and annotation: a guide and web resource for non-coding RNA databases. RNA Biol 2012;9:274–282.

    Article  PubMed  CAS  Google Scholar 

  40. Lee S, Vasudevan S. Post-transcriptional stimulation of gene expression by microRNAs. Adv Exp Med Biol 2012;768:97–126.

    Article  Google Scholar 

  41. Jovicic A, Roshan R, Moisoi N, et al. Comprehensive expression analyses of neural cell-type-specific miRNAs identify new determinants of the specification and maintenance of neuronal phenotypes. J Neurosci 2013;33:5127–5137.

    Article  PubMed  CAS  Google Scholar 

  42. Cardoso AL, Guedes JR, Pereira de Almeida L, Pedroso de Lima MC. miR-155 modulates microglia-mediated immune response by down-regulating SOCS-1 and promoting cytokine and nitric oxide production. Immunology 2011;135:73–88.

    Article  Google Scholar 

  43. Li YY, Alexandrov PN, Pogue AI, Zhao Y, Bhattacharjee S, Lukiw WJ. miRNA-155 upregulation and complement factor H deficits in Down's syndrome. Neuroreport 2011;23:168–173.

    Article  Google Scholar 

  44. Li YY, Cui JG, Dua P, Pogue AI, Bhattacharjee S, Lukiw WJ. Differential expression of miRNA-146a-regulated inflammatory genes in human primary neural, astroglial and microglial cells. Neurosci Lett 2011;499:109–113.

    Article  PubMed  CAS  Google Scholar 

  45. Ponomarev ED, Veremeyko T, Weiner HL. MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia 2013;61:91–103.

    Article  PubMed  Google Scholar 

  46. Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 2010;17:64–70.

    Article  PubMed  Google Scholar 

  47. Mishra R, Chhatbar C, Singh SK. HIV-1 Tat C-mediated regulation of tumor necrosis factor receptor-associated factor-3 by microRNA 32 in human microglia. J Neuroinflammation 2012;9:131.

    Article  PubMed  CAS  Google Scholar 

  48. Tarassishin L, Loudig O, Bauman A, Shafit-Zagardo B, Suh HS, Lee SC. Interferon regulatory factor 3 inhibits astrocyte inflammatory gene expression through suppression of the proinflammatory miR-155 and miR-155*. Glia 2011;59:1911–1922.

    Article  PubMed  Google Scholar 

  49. Rom S, Rom I, Passiatore G, et al. CCL8/MCP-2 is a target for mir-146a in HIV-1-infected human microglial cells. FASEB J 2010;24:2292–2300.

    Article  PubMed  CAS  Google Scholar 

  50. Saba R, Gushue S, Huzarewich RL, et al. MicroRNA 146a (miR-146a) is over-expressed during prion disease and modulates the innate immune response and the microglial activation state. PLoS One 2012;7:e30832.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang L, Dong LY, Li YJ, Hong Z, Wei WS. miR-21 represses FasL in microglia and protects against microglia-mediated neuronal cell death following hypoxia/ischemia. Glia 2012;60:1888–1895.

    Article  PubMed  Google Scholar 

  52. Zhang L, Dong LY, Li YJ, Hong Z, Wei WS. The microRNA miR-181c controls microglia-mediated neuronal apoptosis by suppressing tumor necrosis factor. J Neuroinflammation 2012;9:211.

    Article  PubMed  CAS  Google Scholar 

  53. Zhao H, Wang J, Gao L, et al. MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation. Stroke 2013;44:1706–1713.

    Article  PubMed  CAS  Google Scholar 

  54. Selvamani A, Sathyan P, Miranda RC, Sohrabji F. An antagomir to microRNA Let7f promotes neuroprotection in an ischemic stroke model. PLoS One 2012;7:e32662.

    Article  PubMed  CAS  Google Scholar 

Download references

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwenn A. Garden.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1224 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garden, G.A. Epigenetics and the Modulation of Neuroinflammation. Neurotherapeutics 10, 782–788 (2013). https://doi.org/10.1007/s13311-013-0207-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-013-0207-4

Keywords

Navigation