Skip to main content

Advertisement

Log in

Intrabodies as Neuroprotective Therapeutics

  • Review
  • Published:
Neurotherapeutics

Abstract

The process of misfolding of proteins that can trigger a pathogenic cascade leading to neurodegenerative diseases largely originates intracellularly. It is possible to harness the specificity and affinity of antibodies to counteract either protein misfolding itself, or the aberrant interactions and excess stressors immediately downstream of the primary insult. This review covers the emerging field of engineering intracellular antibody fragments, intrabodies and nanobodies, in neurodegeneration. Huntington's disease has provided the clearest proof of concept for this approach. The model systems and readouts for this disorder power the studies, and the potential to intervene therapeutically at early stages in known carriers with projected ages of onset increases the chances of meaningful clinical trials. Both single-chain Fv and single-domain nanobodies have been identified against specific targets; data have allowed feedback for rational design of bifunctional constructs, as well as target validation. Intrabodies that can modulate the primary accumulating protein in Parkinson's disease, alpha-synuclein, are also reviewed, covering a range of domains and conformers. Recombinant antibody technology has become a major player in the therapeutic pipeline for cancer, infectious diseases, and autoimmunity. There is also tremendous potential for applying this powerful biotechnology to neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carlson JR. A new means of inducibly inactivating a cellular protein. Mol Cell Biol 1988;8:2638-2646.

    PubMed  CAS  Google Scholar 

  2. Mukhtar MM, Li S, Li W, Wan T, Mu Y, Wei W, et al. Single-chain intracellular antibodies inhibit influenza virus replication by disrupting interaction of proteins involved in viral replication and transcription. Int J Biochem Cell Biol 2009;41:554-560.

    PubMed  CAS  Google Scholar 

  3. Aires da Silva F, Santa-Marta M, Freitas-Vieira A, Mascarenhas P, Barahona I, Moniz-Pereira J, et al. Camelized rabbit-derived VH single-domain intrabodies against Vif strongly neutralize HIV-1 infectivity. J Mol Biol 2004;340:525-542.

    PubMed  CAS  Google Scholar 

  4. Doorbar J, Griffin H. Intrabody strategies for the treatment of human papillomavirus-associated disease. Expert Opin Biol Ther 2007;7:677-689.

    PubMed  CAS  Google Scholar 

  5. Marasco WA, Chen S, Richardson JH, Ramstedt U, Jones SD. Intracellular antibodies against HIV-1 envelope protein for AIDS gene therapy. Hum Gene Ther 1998;9:1627-1642.

    PubMed  CAS  Google Scholar 

  6. Lo AS, Zhu Q, Marasco WA. Intracellular antibodies (intrabodies) and their therapeutic potential. Handb Exp Pharmacol 2008:343-373.

  7. Tanaka T, Williams RL, Rabbitts TH. Tumour prevention by a single antibody domain targeting the interaction of signal transduction proteins with RAS. EMBO J 2007;26:3250-3259.

    PubMed  CAS  Google Scholar 

  8. Groot AJ, Gort EH, van der Wall E, van Diest PJ, Vooijs M. Conditional inactivation of HIF-1 using intrabodies. Cell Oncol 2008;30:397-409.

    PubMed  CAS  Google Scholar 

  9. Messer A, McLear J. The therapeutic potential of intrabodies in neurologic disorders: focus on Huntington and Parkinson diseases. BioDrugs 2006;20:327-333.

    PubMed  CAS  Google Scholar 

  10. Miller TW, Shirley TL, Wolfgang WJ, Kang X, Messer A. DNA vaccination against mutant huntingtin ameliorates the HDR6/2 diabetic phenotype. Mol Ther 2003;7:572-579.

    PubMed  CAS  Google Scholar 

  11. Cardinale A, Biocca S. The potential of intracellular antibodies for therapeutic targeting of protein-misfolding diseases. Trends Mol Med 2008;14:373-380.

    PubMed  CAS  Google Scholar 

  12. Messer A, Lynch SM, Butler DC. Developing intrabodies for the therapeutic suppression of neurodegenerative pathology. Expert Opin Biol Ther 2009;9:1189-1197.

    PubMed  CAS  Google Scholar 

  13. Zhou C, Przedborski S. Intrabody and Parkinson's disease. Biochim Biophys Acta 2008 ;1792:634-642.

    PubMed  Google Scholar 

  14. Huston JS, Margolies MN, Haber E. Antibody binding sites. Adv Protein Chem 1996;49:329-450.

    PubMed  CAS  Google Scholar 

  15. Muyldermans S, Baral TN, Retamozzo VC, De Baetselier P, De Genst E, Kinne J, et al. Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol 2009;128:178-183.

    PubMed  CAS  Google Scholar 

  16. Harmsen MM, De Haard HJ. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 2007;77:13-22.

    PubMed  CAS  Google Scholar 

  17. Roovers RC, van Dongen GA, van Bergen en Henegouwen PM. Nanobodies in therapeutic applications. Curr Opin Mol Ther 2007;9:327-335.

    PubMed  CAS  Google Scholar 

  18. Habicht G, Haupt C, Friedrich RP, Hortschansky P, Sachse C, Meinhardt J, et al. Directed selection of a conformational antibody domain that prevents mature amyloid fibril formation by stabilizing Abeta protofibrils. Proc Natl Acad Sci U S A 2007;104:19232-19237.

    PubMed  CAS  Google Scholar 

  19. Chartier A, Raz V, Sterrenburg E, Verrips CT, van der Maarel SM, Simonelig M. Prevention of oculopharyngeal muscular dystrophy by muscular expression of Llama single-chain intrabodies in vivo. Hum Mol Genet 2009;18:1849-1859.

    PubMed  CAS  Google Scholar 

  20. Butler DC, McLear JA, Messer A. Engineered antibody therapies to counteract mutant huntingtin and related toxic intracellular proteins. Prog Neurobiol 2012;97:190-204.

    PubMed  CAS  Google Scholar 

  21. Kvam E, Sierks MR, Shoemaker CB, Messer A. Physico-chemical determinants of soluble intrabody expression in mammalian cell cytoplasm. Protein Eng Des Sel 2010;23:489-498.

    PubMed  CAS  Google Scholar 

  22. Vonsattel JP, Myers RH, Stevens TJ, Ferrante RJ, Bird ED, Richardson EP, Jr. Neuropathological classification of Huntington's disease. J Neuropathol Exp Neurol 1985;44:559-577.

    PubMed  CAS  Google Scholar 

  23. The Huntington's Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 1993;72:971-983.

    Google Scholar 

  24. Wexler NS, Lorimer J, Porter J, Gomez F, Moskowitz C, Shackell E, et al. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's disease age of onset. Proc Natl Acad Sci U S A 2004;101:3498-3503.

    PubMed  CAS  Google Scholar 

  25. Manley K, Pugh J, Messer A. Instability of the CAG repeat in immortalized fibroblast cell cultures from Huntington's disease transgenic mice. Brain Res 1999;835:74-79.

    PubMed  CAS  Google Scholar 

  26. Kennedy L, Evans E, Chen CM, Craven L, Detloff PJ, Ennis M, et al. Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis. Hum Mol Genet 2003;12:3359-3367.

    PubMed  CAS  Google Scholar 

  27. Ehrlich ME, Conti L, Toselli M, Taglietti L, Fiorillo E, Taglietti V, et al. ST14A cells have properties of a medium-size spiny neuron. Exp Neurol 2001;167:215-226.

    PubMed  CAS  Google Scholar 

  28. Kvam E, Nannenga BL, Wang MS, Jia Z, Sierks MR, Messer A. Conformational targeting of fibrillar polyglutamine proteins in live cells escalates aggregation and cytotoxicity. PLoS One 2009;4:e5727.

    PubMed  Google Scholar 

  29. Miller TW, Zhou C, Gines S, MacDonald ME, Mazarakis ND, Bates GP, et al. A human single-chain Fv intrabody preferentially targets amino-terminal Huntingtin's fragments in striatal models of Huntington's disease. Neurobiol Dis 2005;19:47-56.

    PubMed  CAS  Google Scholar 

  30. Crook ZR, Housman D. Huntington's disease: can mice lead the way to treatment? Neuron 2011;69:423-435.

    PubMed  CAS  Google Scholar 

  31. Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 1996;87:493-506.

    PubMed  CAS  Google Scholar 

  32. Gray M, Shirasaki DI, Cepeda C, Andre VM, Wilburn B, Lu XH, et al. Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci 2008;28:6182-6195.

    PubMed  CAS  Google Scholar 

  33. Slow EJ, van Raamsdonk J, Rogers D, Coleman SH, Graham RK, Deng Y, et al. Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 2003;12:1555-1567.

    PubMed  CAS  Google Scholar 

  34. Menalled LB, Sison JD, Dragatsis I, Zeitlin S, Chesselet MF. Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington's disease with 140 CAG repeats. J Comp Neurol 2003;465:11-26.

    PubMed  CAS  Google Scholar 

  35. Gupta S, Jie S, Colby DW. Protein misfolding detected early in pathogenesis of transgenic mouse model of Huntington disease using amyloid seeding assay. J Biol Chem 2012;287:9982-9989.

    PubMed  CAS  Google Scholar 

  36. Miller TW, Messer A. Gene therapy for CNS diseases using Intrabodies. In: Kaplitt MG, During MJ (eds) Gene therapy of the central nervous system: from bench to bedside. Academic Press, Amsterdam, Boston, MA; 2006, pp. 133-150.

    Google Scholar 

  37. Khoshnan A, Ko J, Patterson PH. Effects of intracellular expression of anti-huntingtin antibodies of various specificities on mutant huntingtin aggregation and toxicity. Proc Natl Acad Sci U S A 2002;99:1002-1007.

    PubMed  CAS  Google Scholar 

  38. Robertson AL, Bate MA, Buckle AM, Bottomley SP. The rate of polyQ-mediated aggregation is dramatically affected by the number and location of surrounding domains. J Mol Biol 2011;413:879-887.

    PubMed  CAS  Google Scholar 

  39. Wetzel R. Physical chemistry of polyglutamine: intriguing tales of a monotonous sequence. J Mol Biol 2012;421:466-490.

    PubMed  CAS  Google Scholar 

  40. Lecerf JM, Shirley TL, Zhu Q, Kazantsev A, Amersdorfer P, Housman DE, et al. Human single-chain Fv intrabodies counteract in situ huntingtin aggregation in cellular models of Huntington's disease. Proc Natl Acad Sci U S A 2001;98:4764-4769.

    PubMed  CAS  Google Scholar 

  41. Murphy RC, Messer A. A single-chain Fv intrabody provides functional protection against the effects of mutant protein in an organotypic slice culture model of Huntington's disease. Brain Res Mol Brain Res 2004;121:141-145.

    PubMed  CAS  Google Scholar 

  42. Dragatsis I, Levine MS, Zeitlin S. Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat Genet 2000;26:300-306.

    PubMed  CAS  Google Scholar 

  43. Steffan JS, Agrawal N, Pallos J, Rockabrand E, Trotman LC, Slepko N, et al. SUMO modification of Huntingtin and Huntington's disease pathology. Science 2004;304:100-104.

    PubMed  CAS  Google Scholar 

  44. Wolfgang WJ, Miller TW, Webster JM, Huston JS, Thompson LM, Marsh JL, et al. Suppression of Huntington's disease pathology in Drosophila by human single-chain Fv antibodies. Proc Natl Acad Sci U S A 2005;102:11563-11568.

    PubMed  CAS  Google Scholar 

  45. McLear JA, Lebrecht D, Messer A, Wolfgang WJ. Combinational approach of intrabody with enhanced Hsp70 expression addresses multiple pathologies in a fly model of Huntington's disease. FASEB J 2008;22:2003-2011.

    PubMed  CAS  Google Scholar 

  46. Bortvedt SF, McLear JA, Messer A, Ahern-Rindell AJ, Wolfgang WJ. Cystamine and intrabody co-treatment confers additional benefits in a fly model of Huntington's disease. Neurobiol Dis 2010;40:130-134.

    PubMed  CAS  Google Scholar 

  47. Hathorn T, Snyder-Keller A, Messer A. Nicotinamide improves motor deficits and upregulates PGC-1alpha and BDNF gene expression in a mouse model of Huntington's disease. Neurobiol Dis 2011;41:43-50.

    PubMed  CAS  Google Scholar 

  48. Snyder-Keller A, McLear JA, Hathorn T, Messer A. Early or late-stage anti-N-terminal Huntingtin intrabody gene therapy reduces pathological features in B6.HDR6/1 mice. J Neuropathol Exp Neurol 2010;69:1078-1085.

    PubMed  CAS  Google Scholar 

  49. Colby DW, Chu Y, Cassady JP, Duennwald M, Zazulak H, Webster JM, et al. Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. Proc Natl Acad Sci U S A 2004;101:17616-17621.

    PubMed  CAS  Google Scholar 

  50. Colby DW, Garg P, Holden T, Chao G, Webster JM, Messer A, et al. Development of a human light chain variable domain (V(L)) intracellular antibody specific for the amino terminus of huntingtin via yeast surface display. J Mol Biol 2004;342:901-912.

    PubMed  CAS  Google Scholar 

  51. Southwell AL, Ko J, Patterson PH. Intrabody gene therapy ameliorates motor, cognitive, and neuropathological symptoms in multiple mouse models of Huntington's disease. J Neurosci 2009;29:13589-13602.

    PubMed  CAS  Google Scholar 

  52. Southwell AL, Khoshnan A, Dunn DE, Bugg CW, Lo DC, Patterson PH. Intrabodies binding the proline-rich domains of mutant huntingtin increase its turnover and reduce neurotoxicity. J Neurosci 2008;28:9013-9020.

    PubMed  CAS  Google Scholar 

  53. Schiefner A, Chatwell L, Korner J, Neumaier I, Colby DW, Volkmer R, et al. A Disulfide-Free Single-Domain V(L) Intrabody with Blocking activity towards huntingtin reveals a novel mode of epitope recognition. J Mol Biol 2011;414:337-355.

    PubMed  CAS  Google Scholar 

  54. Gu X, Greiner ER, Mishra R, Kodali R, Osmand A, Finkbeiner S, et al. Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron 2009;64:828-840.

    PubMed  CAS  Google Scholar 

  55. Aiken CT, Steffan JS, Guerrero CM, Khashwji H, Lukacsovich T, Simmons D, et al. Phosphorylation of threonine 3: implications for Huntingtin aggregation and neurotoxicity. J Biol Chem 2009;284:29427-29436.

    PubMed  CAS  Google Scholar 

  56. Rockabrand E, Slepko N, Pantalone A, Nukala VN, Kazantsev A, Marsh JL, et al. The first 17 amino acids of Huntingtin modulate its sub-cellular localization, aggregation and effects on calcium homeostasis. Hum Mol Genet 2007;16:61-77.

    PubMed  CAS  Google Scholar 

  57. Qin ZH, Wang Y, Sapp E, Cuiffo B, Wanker E, Hayden MR, et al. Huntingtin bodies sequester vesicle-associated proteins by a polyproline-dependent interaction. J Neurosci 2004;24:269-281.

    PubMed  CAS  Google Scholar 

  58. Ko J, Ou S, Patterson PH. New anti-huntingtin monoclonal antibodies: implications for huntingtin conformation and its binding proteins. Brain Res Bull 2001;56:319-329.

    PubMed  CAS  Google Scholar 

  59. Southwell AL, Bugg CW, Kaltenbach LS, Dunn D, Butland S, Weiss A, et al. Perturbation with intrabodies reveals that calpain cleavage is required for degradation of huntingtin exon 1. PLoS One 2011;6:e16676.

    PubMed  CAS  Google Scholar 

  60. Wang CE, Zhou H, McGuire JR, Cerullo V, Lee B, Li SH, et al. Suppression of neuropil aggregates and neurological symptoms by an intracellular antibody implicates the cytoplasmic toxicity of mutant huntingtin. J Cell Biol 2008;181:803-816.

    PubMed  CAS  Google Scholar 

  61. Shulman JM, De Jager PL, Feany MB. Parkinson's disease: genetics and pathogenesis. Annu Rev Pathol 2011;6:193-222.

    PubMed  CAS  Google Scholar 

  62. Meissner WG, Frasier M, Gasser T, Goetz CG, Lozano A, Piccini P, et al. Priorities in Parkinson's disease research. Nat Rev Drug Discov 2011;10:377-393.

    PubMed  CAS  Google Scholar 

  63. Cookson MR. alpha-Synuclein and neuronal cell death. Mol Neurodegener 2009;4:9.

    PubMed  Google Scholar 

  64. Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, Saad M, et al. Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet 2011;377:641-649.

    PubMed  Google Scholar 

  65. Lane EL, Handley OJ, Rosser AE, Dunnett SB. Potential cellular and regenerative approaches for the treatment of Parkinson's disease. Neuropsychiatr Dis Treat 2008;4:835-845.

    PubMed  Google Scholar 

  66. Maraganore DM, de Andrade M, Elbaz A, Farrer MJ, Ioannidis JP, Kruger R, et al. Collaborative analysis of alpha-synuclein gene promoter variability and Parkinson disease. JAMA 2006;296:661-670.

    PubMed  CAS  Google Scholar 

  67. Greggio E, Bisaglia M, Civiero L, Bubacco L. Leucine-rich repeat kinase 2 and alpha-synuclein: intersecting pathways in the pathogenesis of Parkinson's disease? Mol Neurodegener 2011;6:6.

    PubMed  CAS  Google Scholar 

  68. Tong Y, Yamaguchi H, Giaime E, Boyle S, Kopan R, Kelleher RJ, 3rd, et al. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci U S A 2010;107:9879-9884.

    PubMed  CAS  Google Scholar 

  69. Cullen V, Sardi SP, Ng J, Xu YH, Sun Y, Tomlinson JJ, et al. Acid beta-glucosidase mutants linked to Gaucher disease, Parkinson disease, and Lewy body dementia alter alpha-synuclein processing. Ann Neurol 2011;69:940-953.

    PubMed  CAS  Google Scholar 

  70. Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, et al. Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 2010;65:66-79.

    PubMed  CAS  Google Scholar 

  71. Xilouri M, Vogiatzi T, Vekrellis K, Park D, Stefanis L. Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PLoS One 2009;4:e5515.

    PubMed  Google Scholar 

  72. Beyer K, Ariza A. Alpha-synuclein posttranslational modification and alternative splicing as a trigger for neurodegeneration. Mol Neurobiol 2013;47:509-524.

    PubMed  CAS  Google Scholar 

  73. Giasson BI, Murray IV, Trojanowski JQ, Lee VM. A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J Biol Chem 2001;276:2380-2386.

    PubMed  CAS  Google Scholar 

  74. Lynch SM, Zhou C, Messer A. An scFv intrabody against the nonamyloid component of alpha-synuclein reduces intracellular aggregation and toxicity. J Mol Biol 2008;377:136-147.

    PubMed  CAS  Google Scholar 

  75. Periquet M, Fulga T, Myllykangas L, Schlossmacher MG, Feany MB. Aggregated alpha-synuclein mediates dopaminergic neurotoxicity in vivo. J Neurosci 2007;27:3338-3846.

    PubMed  CAS  Google Scholar 

  76. Zhou C, Emadi S, Sierks MR, Messer A. A human single-chain Fv intrabody blocks aberrant cellular effects of overexpressed alpha-synuclein. Mol Ther 2004;10:1023-1031.

    PubMed  CAS  Google Scholar 

  77. Yuan B, Sierks MR. Intracellular targeting and clearance of oligomeric alpha-synuclein alleviates toxicity in mammalian cells. Neurosci Lett 2009;459:16-18.

    PubMed  CAS  Google Scholar 

  78. Vuchelen A, O'Day E, De Genst E, Pardon E, Wyns L, Dumoulin M, et al. (1)H, (13)C and (15)N assignments of a camelid nanobody directed against human alpha-synuclein. Biomol NMR Assign 2009;3:231-233.

    PubMed  CAS  Google Scholar 

  79. De Genst EJ, Guilliams T, Wellens J, O'Day EM, Waudby CA, Meehan S, et al. Structure and properties of a complex of alpha-synuclein and a single-domain camelid antibody. J Mol Biol 2010;402:326-343.

    PubMed  Google Scholar 

  80. Emadi S, Barkhordarian H, Wang MS, Schulz P, Sierks MR. Isolation of a human single chain antibody fragment against oligomeric alpha-synuclein that inhibits aggregation and prevents alpha-synuclein-induced toxicity. J Mol Biol 2007;368:1132-1144.

    PubMed  CAS  Google Scholar 

  81. Emadi S, Kasturirangan S, Wang MS, Schulz P, Sierks MR. Detecting morphologically distinct oligomeric forms of alpha-synuclein. J Biol Chem 2009;284:11048-11058.

    PubMed  CAS  Google Scholar 

  82. Guilliams T, El-Turk F, Buell AK, O'Day E, Aprile F, Esbjorner EK, et al. Nanobodies raised against monomeric alpha-synuclein distinguish between fibrils at different maturation stages. J Mol Biol 2013 Apr 1 [Epub ahead of print].

  83. Rechsteiner M, Rogers SW. PEST sequences and regulation by proteolysis. Trends Biochem Sci 1996;21:267-271.

    PubMed  CAS  Google Scholar 

  84. Butler DC, Messer A. Bifunctional anti-huntingtin proteasome-directed intrabodies mediate efficient degradation of mutant huntingtin exon 1 protein fragments. PLoS One 2011;6:e29199.

    PubMed  CAS  Google Scholar 

  85. Verhoef LG, Lindsten K, Masucci MG, Dantuma NP. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum Mol Genet 2002;11:2689-2700.

    PubMed  CAS  Google Scholar 

  86. Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 2002;11:1107-1117.

    PubMed  CAS  Google Scholar 

  87. Rose C, Menzies FM, Renna M, Acevedo-Arozena A, Corrochano S, Sadiq O, et al. Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease. Hum Mol Genet 2010;19:2144-2153.

    PubMed  CAS  Google Scholar 

  88. Sarkar S, Rubinsztein DC. Huntington's disease: degradation of mutant huntingtin by autophagy. FEBS J 2008;275:4263-4670.

    PubMed  CAS  Google Scholar 

  89. Bauer PO, Goswami A, Wong HK, Okuno M, Kurosawa M, Yamada M, et al. Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nat Biotechnol 2010;28:256-263.

    PubMed  CAS  Google Scholar 

  90. Joshi SN, Butler DC, Messer A. Fusion to a highly charged proteasomal retargeting sequence increases soluble cytoplasmic expression and efficacy of diverse anti-synuclein intrabodies. MAbs 2012 Aug 28 [Epub ahead of print].

  91. Tomas-Zapico C, Diez-Zaera M, Ferrer I, Gomez-Ramos P, Moran MA, Miras-Portugal MT, et al. alpha-Synuclein accumulates in huntingtin inclusions but forms independent filaments and its deficiency attenuates early phenotype in a mouse model of Huntington's disease. Hum Mol Genet 2012;21:495-510.

    PubMed  CAS  Google Scholar 

  92. Herrera F, Outeiro TF. alpha-Synuclein modifies huntingtin aggregation in living cells. FEBS Lett 2012;586:7-12.

    PubMed  CAS  Google Scholar 

  93. Corrochano S, Renna M, Tomas-Zapico C, Brown SD, Lucas JJ, Rubinsztein DC, et al. alpha-Synuclein levels affect autophagosome numbers in vivo and modulate Huntington disease pathology. Autophagy 2012;8:431-432.

    PubMed  CAS  Google Scholar 

  94. McBride RC, Ogbunugafor CB, Turner PE. Robustness promotes evolvability of thermotolerance in an RNA virus. BMC Evol Biol 2008;8:231.

    PubMed  Google Scholar 

  95. DiFiglia M, Sena-Esteves M, Chase K, Sapp E, Pfister E, Sass M, et al. Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci U S A 2007;104:17204-17209.

    PubMed  CAS  Google Scholar 

  96. Kordasiewicz HB, Stanek LM, Wancewicz EV, Mazur C, McAlonis MM, Pytel KA, et al. Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis. Neuron 2012;74:1031-1044.

    PubMed  CAS  Google Scholar 

  97. Lu XH, Yang XW. "Huntingtin holiday": progress toward an antisense therapy for Huntington's disease. Neuron. 2012;74:964-966.

    PubMed  CAS  Google Scholar 

  98. Bowers WJ, Breakefield XO, Sena-Esteves M. Genetic therapy for the nervous system. Hum Mol Genet 2011;20:R28-41.

    PubMed  CAS  Google Scholar 

  99. Ramaswamy S, Kordower JH. Gene therapy for Huntington's disease. Neurobiol Dis 2012;48:243-254.

    PubMed  CAS  Google Scholar 

  100. Allay JA, Sleep S, Long S, Tillman DM, Clark R, Carney G, et al. Good manufacturing practice production of self-complementary serotype 8 adeno-associated viral vector for a hemophilia B clinical trial. Hum Gene Ther 2011;22:595-604.

    PubMed  CAS  Google Scholar 

  101. Ciesielska A, Hadaczek P, Mittermeyer G, Zhou S, Wright JF, Bankiewicz KS, et al. Cerebral infusion of AAV9 vector-encoding non-self proteins can elicit cell-mediated immune responses. Mol Ther 2013;21:158-166.

    PubMed  CAS  Google Scholar 

  102. Zhan X, Ander BP, Liao IH, Hansen JE, Kim C, Clements D, et al. Recombinant Fv-Hsp70 protein mediates neuroprotection after focal cerebral ischemia in rats. Stroke 2010;41:538-543.

    PubMed  CAS  Google Scholar 

  103. Atwal JK, Chen Y, Chiu C, Mortensen DL, Meilandt WJ, Liu Y, et al. A therapeutic antibody targeting BACE1 inhibits amyloid-beta production in vivo. Sci Transl Med 2011;3:84ra43.

    PubMed  Google Scholar 

  104. Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W, Lu Y, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med 2011;3:84ra44.

    PubMed  Google Scholar 

  105. Echeverria GV, Cooper TA. RNA-binding proteins in microsatellite expansion disorders: mediators of RNA toxicity. Brain Res 2012;1462:100-111.

    PubMed  CAS  Google Scholar 

  106. Zu T, Gibbens B, Doty NS, Gomes-Pereira M, Huguet A, Stone MD, et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci U S A 2011;108:260-265.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the Messer laboratory group, especially Drs David Butler and Abigail Snyder-Keller, and Kevin Manley for helpful discussions of the manuscript. Work in the Messer laboratory was supported, in part, by grants from NIH/NINDS NS053912 and NS061257, and NSF REU #DBI1062963; Hereditary Disease Foundation, High Q Foundation/ CHDI, Huntington’s Disease Society of America, and the Michael J. Fox Foundation. Full conflict of interest disclosure is available in the electronic supplementary material for this article.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Messer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 510 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Messer, A., Joshi, S.N. Intrabodies as Neuroprotective Therapeutics. Neurotherapeutics 10, 447–458 (2013). https://doi.org/10.1007/s13311-013-0193-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-013-0193-6

Keywords

Navigation