Skip to main content
Log in

Remyelination Therapy for Multiple Sclerosis

  • Published:
Neurotherapeutics

Abstract

Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system characterized by infiltration of immune cells and progressive damage to myelin and axons. All therapeutics used to treat MS have been developed to target an overactive immune response, with aims to reduce disease activity. Chronic demyelinated axons are further prone to irreversible damage and death, and it is imperative that new therapies address this critical issue. Remyelination, the generation of new myelin in the adult nervous system, is an endogenous repair mechanism that restores function of denuded axons and delays their deterioration. Although remyelination can be extensive in some patients, the majority of cases limit repair only to the acute phase of disease. A significant current drive in new MS therapeutics is to identify targets that can promote remyelination by boosting endogenous oligodendrocyte precursor cells to form new myelin. Also, a number of inhibitory pathways have been identified in chronic MS lesions that prevent oligodendrocyte precursor cells from being properly recruited to demyelinated lesions or interfere with their differentiation to myelin-forming oligodendrocytes. In this review, we introduce the phenomenon of remyelination from the view of experimental models and studies in MS patients, describe a potential role in remyelination for currently available MS mediations, and discuss many avenues that are being actively studied to promote remyelination. The next frontier in MS therapeutics will supplement immunomodulation with agents that directly foster myelin repair, with aims to delay disease progression and recover lost neurological functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 2008;31:247-269.

    PubMed  CAS  Google Scholar 

  2. Pohl HB, Porcheri C, Mueggler T, et al. Genetically induced adult oligodendrocyte cell death is associated with poor myelin clearance, reduced remyelination, and axonal damage. J Neurosci 2011;31:1069-1080.

    PubMed  CAS  Google Scholar 

  3. Griffiths I, Klugmann M, Anderson T, et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science 1998;280:1610-1613.

    PubMed  CAS  Google Scholar 

  4. Felts PA, Baker TA, Smith KJ. Conduction in segmentally demyelinated mammalian central axons. J Neurosci 1997;17:7267-7277.

    PubMed  CAS  Google Scholar 

  5. Craner MJ, Lo AC, Black JA, Waxman SG. Abnormal sodium channel distribution in optic nerve axons in a model of inflammatory demyelination. Brain 2003;126:1552-1561.

    PubMed  Google Scholar 

  6. Franklin RJ, Ffrench-Constant C. Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 2008;9:839-855.

    PubMed  CAS  Google Scholar 

  7. Smith KJ, Blakemore WF, McDonald WI. Central remyelination restores secure conduction. Nature 1979;280:395-396.

    PubMed  CAS  Google Scholar 

  8. Zambonin JL, Zhao C, Ohno N, et al. Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis. Brain 2011;134:1901-1913.

    PubMed  Google Scholar 

  9. Jeffery ND, Blakemore WF. Locomotor deficits induced by experimental spinal cord demyelination are abolished by spontaneous remyelination. Brain 1997;120 (pt 1):27-37.

    PubMed  Google Scholar 

  10. Kornek B, Storch MK, Weissert R, et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 2000;157:267-276.

    PubMed  CAS  Google Scholar 

  11. Irvine KA, Blakemore WF. Remyelination protects axons from demyelination-associated axon degeneration. Brain 2008;131:1464-1477.

    PubMed  CAS  Google Scholar 

  12. Hagemeier K, Bruck W, Kuhlmann T. Multiple sclerosis — remyelination failure as a cause of disease progression. Histol Histopathol 2012;27:277-287.

    PubMed  CAS  Google Scholar 

  13. Manrique-Hoyos N, Jurgens T, Gronborg M, et al. Late motor decline after accomplished remyelination: impact for progressive multiple sclerosis. Ann Neurol 2012;71:227-244.

    PubMed  Google Scholar 

  14. Oluich LJ, Stratton JA, Lulu Xing Y, et al. Targeted ablation of oligodendrocytes induces axonal pathology independent of overt demyelination. J Neurosci 2012;32:8317-8330.

    PubMed  CAS  Google Scholar 

  15. Blakemore WF. Pattern of remyelination in the CNS. Nature 1974;249:577-578.

    PubMed  CAS  Google Scholar 

  16. Gledhill RF, Harrison BM, McDonald WI. Pattern of remyelination in the CNS. Nature 1973;244:443-444.

    PubMed  CAS  Google Scholar 

  17. Keirstead HS, Blakemore WF. Identification of post-mitotic oligodendrocytes incapable of remyelination within the demyelinated adult spinal cord. J Neuropathol Exp Neurol 1997;56:1191-1201.

    PubMed  CAS  Google Scholar 

  18. Nishiyama A, Lin XH, Giese N, Heldin CH, Stallcup WB. Co-localization of NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells in the developing rat brain. J Neurosci Res 1996;43:299-314.

    PubMed  CAS  Google Scholar 

  19. Pringle NP, Mudhar HS, Collarini EJ, Richardson WD. PDGF receptors in the rat CNS: during late neurogenesis, PDGF alpha-receptor expression appears to be restricted to glial cells of the oligodendrocyte lineage. Development 1992;115:535-551.

    PubMed  CAS  Google Scholar 

  20. Rivers LE, Young KM, Rizzi M, et al. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 2008;11:1392-1401.

    PubMed  CAS  Google Scholar 

  21. Bieber AJ, Kerr S, Rodriguez M. Efficient central nervous system remyelination requires T cells. Ann Neurol 2003;53:680-684.

    PubMed  Google Scholar 

  22. Woodruff RH, Franklin RJ. Demyelination and remyelination of the caudal cerebellar peduncle of adult rats following stereotaxic injections of lysolecithin, ethidium bromide, and complement/anti-galactocerebroside: a comparative study. Glia 1999;25:216-228.

    PubMed  CAS  Google Scholar 

  23. Hall SM. The effect of injections of lysophosphatidyl choline into white matter of the adult mouse spinal cord. J Cell Sci 1972;10:535-546.

    PubMed  CAS  Google Scholar 

  24. Blakemore WF. Ethidium bromide induced demyelination in the spinal cord of the cat. Neuropathol Appl Neurobiol 1982;8:365-375.

    PubMed  CAS  Google Scholar 

  25. Yajima K, Suzuki K. Demyelination and remyelination in the rat central nervous system following ethidium bromide injection. Lab Invest 1979;41:385-392.

    PubMed  CAS  Google Scholar 

  26. Blakemore WF. Demyelination of the superior cerebellar peduncle in the mouse induced by cuprizone. J Neurol Sci 1973;20:63-72.

    PubMed  CAS  Google Scholar 

  27. Ludwin SK. Central nervous system demyelination and remyelination in the mouse: an ultrastructural study of cuprizone toxicity. Lab Invest 1978;39:597-612.

    PubMed  CAS  Google Scholar 

  28. Blakemore WF. Remyelination of the superior cerebellar peduncle in the mouse following demyelination induced by feeding cuprizone. J Neurol Sci 1973;20:73-83.

    PubMed  CAS  Google Scholar 

  29. Glezer I, Lapointe A, Rivest S. Innate immunity triggers oligodendrocyte progenitor reactivity and confines damages to brain injuries. FASEB J 2006;20:750-752.

    PubMed  CAS  Google Scholar 

  30. Rhodes KE, Raivich G, Fawcett JW. The injury response of oligodendrocyte precursor cells is induced by platelets, macrophages and inflammation-associated cytokines. Neuroscience 2006;140:87-100.

    PubMed  CAS  Google Scholar 

  31. Fancy SP, Zhao C, Franklin RJ. Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Mol Cell Neurosci 2004;27:247-254.

    PubMed  CAS  Google Scholar 

  32. Fancy SP, Chan JR, Baranzini SE, Franklin RJ, Rowitch DH. Myelin regeneration: a recapitulation of development? Annu Rev Neurosci 2011;34:21-43.

    PubMed  CAS  Google Scholar 

  33. Shields SA, Gilson JM, Blakemore WF, Franklin RJ. Remyelination occurs as extensively but more slowly in old rats compared to young rats following gliotoxin-induced CNS demyelination. Glia 1999;28:77-83.

    PubMed  CAS  Google Scholar 

  34. Sim FJ, Zhao C, Penderis J, Franklin RJ. The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J Neurosci 2002;22:2451-2459.

    PubMed  CAS  Google Scholar 

  35. Franklin RJ, Blakemore WF. To what extent is oligodendrocyte progenitor migration a limiting factor in the remyelination of multiple sclerosis lesions? Mult Scler 1997;3:84-87.

    PubMed  CAS  Google Scholar 

  36. Franklin RJ, Gilson JM, Blakemore WF. Local recruitment of remyelinating cells in the repair of demyelination in the central nervous system. J Neurosci Res 1997;50:337-344.

    PubMed  CAS  Google Scholar 

  37. Penderis J, Shields SA, Franklin RJ. Impaired remyelination and depletion of oligodendrocyte progenitors does not occur following repeated episodes of focal demyelination in the rat central nervous system. Brain 2003;126:1382-1391.

    PubMed  Google Scholar 

  38. Bramow S, Frischer JM, Lassmann H, et al. Demyelination versus remyelination in progressive multiple sclerosis. Brain 2010;133:2983-2998.

    PubMed  Google Scholar 

  39. Kotter MR, Setzu A, Sim FJ, Van Rooijen N, Franklin RJ. Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia 2001;35:204-212.

    PubMed  CAS  Google Scholar 

  40. Kotter MR, Zhao C, van Rooijen N, Franklin RJ. Macrophage-depletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiol Dis 2005;18:166-175.

    PubMed  CAS  Google Scholar 

  41. Ruckh JM, Zhao JW, Shadrach JL, et al. Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 2012;10:96-103.

    PubMed  CAS  Google Scholar 

  42. Kotter MR, Li WW, Zhao C, Franklin RJ. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 2006;26:328-332.

    PubMed  CAS  Google Scholar 

  43. Hinks GL, Franklin RJ. Delayed changes in growth factor gene expression during slow remyelination in the CNS of aged rats. Mol Cell Neurosci 2000;16:542-556.

    PubMed  CAS  Google Scholar 

  44. Patani R, Balaratnam M, Vora A, Reynolds R. Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol Appl Neurobiol 2007;33:277-287.

    PubMed  CAS  Google Scholar 

  45. Prineas JW, Connell F. Remyelination in multiple sclerosis. Ann Neurol 1979;5:22-31.

    PubMed  CAS  Google Scholar 

  46. Suzuki K, Andrews JM, Waltz JM, Terry RD. Ultrastructural studies of multiple sclerosis. Lab Invest 1969;20:444-454.

    PubMed  CAS  Google Scholar 

  47. Raine CS, Scheinberg L, Waltz JM. Multiple sclerosis. Oligodendrocyte survival and proliferation in an active established lesion. Lab Invest 1981;45:534-546.

    PubMed  CAS  Google Scholar 

  48. Prineas JW, Kwon EE, Cho ES, Sharer LR. Continual breakdown and regeneration of myelin in progressive multiple sclerosis plaques. Ann N Y Acad Sci 1984;436:11-32.

    PubMed  CAS  Google Scholar 

  49. Goldschmidt T, Antel J, Konig FB, Bruck W, Kuhlmann T. Remyelination capacity of the MS brain decreases with disease chronicity. Neurology 2009;72:1914-1921.

    PubMed  CAS  Google Scholar 

  50. Patrikios P, Stadelmann C, Kutzelnigg A, et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain 2006;129:3165-3172.

    PubMed  Google Scholar 

  51. Albert M, Antel J, Bruck W, Stadelmann C. Extensive cortical remyelination in patients with chronic multiple sclerosis. Brain Pathol 2007;17:129-138.

    PubMed  Google Scholar 

  52. Kuhlmann T, Miron V, Cui Q, et al. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain 2008;131:1749-1758.

    PubMed  CAS  Google Scholar 

  53. Wolswijk G. Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 1998;18:601-609.

    PubMed  CAS  Google Scholar 

  54. Chang A, Tourtellotte WW, Rudick R, Trapp BD. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 2002;346:165-173.

    PubMed  Google Scholar 

  55. Lalive PH, Neuhaus O, Benkhoucha M, et al. Glatiramer acetate in the treatment of multiple sclerosis: emerging concepts regarding its mechanism of action. CNS Drugs 2011;25:401-414.

    PubMed  CAS  Google Scholar 

  56. Chen M, Gran B, Costello K, et al. Glatiramer acetate induces a Th2-biased response and crossreactivity with myelin basic protein in patients with MS. Mult Scler 2001;7:209-219.

    PubMed  CAS  Google Scholar 

  57. Vieira PL, Heystek HC, Wormmeester J, Wierenga EA, Kapsenberg ML. Glatiramer acetate (copolymer-1, copaxone) promotes Th2 cell development and increased IL-10 production through modulation of dendritic cells. J Immunol 2003;170:4483-4488.

    PubMed  CAS  Google Scholar 

  58. Weber MS, Prod'homme T, Youssef S, et al. Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med 2007;13:935-943.

    PubMed  CAS  Google Scholar 

  59. Hong J, Li N, Zhang X, Zheng B, Zhang JZ. Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc Natl Acad Sci U S A 2005;102:6449-6454.

    PubMed  CAS  Google Scholar 

  60. Aharoni R, Herschkovitz A, Eilam R, et al. Demyelination arrest and remyelination induced by glatiramer acetate treatment of experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2008;105:11358-11363.

    PubMed  CAS  Google Scholar 

  61. Skihar V, Silva C, Chojnacki A, et al. Promoting oligodendrogenesis and myelin repair using the multiple sclerosis medication glatiramer acetate. Proc Natl Acad Sci U S A 2009;106:17992-17997.

    PubMed  CAS  Google Scholar 

  62. Aharoni R, Vainshtein A, Stock A, et al. Distinct pathological patterns in relapsing-remitting and chronic models of experimental autoimmune enchephalomyelitis and the neuroprotective effect of glatiramer acetate. J Autoimmun 2011;37:228-241.

    PubMed  CAS  Google Scholar 

  63. Zhang Y, Jalili F, Ouamara N, et al. Glatiramer acetate-reactive T lymphocytes regulate oligodendrocyte progenitor cell number in vitro: role of IGF-2. J Neuroimmunol 2010;227:71-79.

    PubMed  CAS  Google Scholar 

  64. Aharoni R, Eilam R, Domev H, et al. The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proc Natl Acad Sci U S A 2005;102:19045-19050.

    PubMed  CAS  Google Scholar 

  65. Brenner T, Arnon R, Sela M, et al. Humoral and cellular immune responses to copolymer 1 in multiple sclerosis patients treated with copaxone. J Neuroimmunol 2001;115:152-160.

    PubMed  CAS  Google Scholar 

  66. Ure DR, Rodriguez M. Polyreactive antibodies to glatiramer acetate promote myelin repair in murine model of demyelinating disease. FASEB J 2002;16:1260-1262.

    PubMed  CAS  Google Scholar 

  67. Cohen JA, Chun J. Mechanisms of fingolimod's efficacy and adverse effects in multiple sclerosis. Ann Neurol 2011;69:759-777.

    PubMed  CAS  Google Scholar 

  68. Jung CG, Kim HJ, Miron VE, et al. Functional consequences of S1P receptor modulation in rat oligodendroglial lineage cells. Glia 2007;55:1656-1667.

    PubMed  CAS  Google Scholar 

  69. Coelho RP, Payne SG, Bittman R, Spiegel S, Sato-Bigbee C. The immunomodulator FTY720 has a direct cytoprotective effect in oligodendrocyte progenitors. J Pharmacol Exp Ther 2007;323:626-635.

    PubMed  CAS  Google Scholar 

  70. Miron VE, Jung CG, Kim HJ, et al. FTY720 modulates human oligodendrocyte progenitor process extension and survival. Ann Neurol 2008;63:61-71.

    PubMed  CAS  Google Scholar 

  71. Miron VE, Hall JA, Kennedy TE, Soliven B, Antel JP. Cyclical and dose-dependent responses of adult human mature oligodendrocytes to fingolimod. Am J Pathol 2008;173:1143-1152.

    PubMed  CAS  Google Scholar 

  72. Jackson SJ, Giovannoni G, Baker D. Fingolimod modulates microglial activation to augment markers of remyelination. J Neuroinflammation 2011;8:76.

    PubMed  CAS  Google Scholar 

  73. Miron VE, Ludwin SK, Darlington PJ, et al. Fingolimod (FTY720) enhances remyelination following demyelination of organotypic cerebellar slices. Am J Pathol 2010;176:2682-2694.

    PubMed  CAS  Google Scholar 

  74. Kim HJ, Miron VE, Dukala D, et al. Neurobiological effects of sphingosine 1-phosphate receptor modulation in the cuprizone model. FASEB J 2011;25:1509-1518.

    PubMed  CAS  Google Scholar 

  75. Hu Y, Lee X, Ji B, et al. Sphingosine 1-phosphate receptor modulator fingolimod (FTY720) does not promote remyelination in vivo. Mol Cell Neurosci 2011;48:72-81.

    PubMed  CAS  Google Scholar 

  76. Al-Izki S, Pryce G, Jackson SJ, Giovannoni G, Baker D. Immunosuppression with FTY720 is insufficient to prevent secondary progressive neurodegeneration in experimental autoimmune encephalomyelitis. Mult Scler 2011;17:939-948.

    PubMed  Google Scholar 

  77. Fox RJ, Miller DH, Phillips, JT, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 2012;367:1087-1097.

    PubMed  CAS  Google Scholar 

  78. Gold R, Kappos L, Arnold DL, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 2012;367:1098-1107.

    PubMed  CAS  Google Scholar 

  79. Linker RA, Lee DH, Ryan S, et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 2011;134:678-692.

    PubMed  Google Scholar 

  80. Moharregh-Khiabani D, Blank A, Skripuletz T, et al. Effects of fumaric acids on cuprizone induced central nervous system de- and remyelination in the mouse. PLoS One 2010;5:e11769.

    PubMed  Google Scholar 

  81. Comi G, Jeffery D, Kappos L, et al. Placebo-controlled trial of oral laquinimod for multiple sclerosis. N Engl J Med 2012;366:1000-1009.

    PubMed  CAS  Google Scholar 

  82. Bruck W, Pfortner R, Pham T, et al. Reduced astrocytic NF-kappaB activation by laquinimod protects from cuprizone-induced demyelination. Acta Neuropathol 2012;124:411-424.

    PubMed  Google Scholar 

  83. Zivadinov R, Dwyer M, Hussein S, et al. Voxel-wise magnetization transfer imaging study of effects of natalizumab and IFNbeta-1a in multiple sclerosis. Mult Scler 2012;18:1125-1134.

    PubMed  CAS  Google Scholar 

  84. Genoud S, Lappe-Siefke C, Goebbels S, et al. Notch1 control of oligodendrocyte differentiation in the spinal cord. J Cell Biol 2002;158:709-718.

    PubMed  CAS  Google Scholar 

  85. Wang S, Sdrulla AD, diSibio G, et al. Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 1998;21:63-75.

    PubMed  Google Scholar 

  86. Kondo T, Raff M. Basic helix-loop-helix proteins and the timing of oligodendrocyte differentiation. Development 2000;127:2989-2998.

    PubMed  CAS  Google Scholar 

  87. John GR, Shankar SL, Shafit-Zagardo B, et al. Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat Med 2002;8:1115-1121.

    PubMed  CAS  Google Scholar 

  88. Stidworthy MF, Genoud S, Li WW, et al. Notch1 and Jagged1 are expressed after CNS demyelination, but are not a major rate-determining factor during remyelination. Brain 2004;127:1928-1941.

    PubMed  Google Scholar 

  89. Jurynczyk M, Jurewicz A, Bielecki B, Raine CS, Selmaj K. Inhibition of Notch signaling enhances tissue repair in an animal model of multiple sclerosis. J Neuroimmunol 2005;170:3-10.

    PubMed  CAS  Google Scholar 

  90. Seifert T, Bauer J, Weissert R, Fazekas F, Storch MK. Notch1 and its ligand Jagged1 are present in remyelination in a T-cell- and antibody-mediated model of inflammatory demyelination. Acta Neuropathol 2007;113:195-203.

    PubMed  CAS  Google Scholar 

  91. Zhang Y, Argaw AT, Gurfein BT, et al. Notch1 signaling plays a role in regulating precursor differentiation during CNS remyelination. Proc Natl Acad Sci U S A 2009;106:19162-19167.

    PubMed  CAS  Google Scholar 

  92. Hu QD, Ang BT, Karsak M, et al. F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation. Cell 2003;115:163-175.

    PubMed  CAS  Google Scholar 

  93. Nakahara J, Kanekura K, Nawa M, Aiso S, Suzuki N. Abnormal expression of TIP30 and arrested nucleocytoplasmic transport within oligodendrocyte precursor cells in multiple sclerosis. J Clin Invest 2009;119:169-181.

    PubMed  CAS  Google Scholar 

  94. Brosnan CF, John GR. Revisiting Notch in remyelination of multiple sclerosis lesions. J Clin Invest 2009;119:10-13.

    PubMed  CAS  Google Scholar 

  95. Shimizu T, Kagawa T, Wada T, et al. Wnt signaling controls the timing of oligodendrocyte development in the spinal cord. Dev Biol 2005;282:397-410.

    PubMed  CAS  Google Scholar 

  96. Feigenson K, Reid M, See J, Crenshaw EB, 3rd, Grinspan JB. Wnt signaling is sufficient to perturb oligodendrocyte maturation. Mol Cell Neurosci 2009;42:255-265.

    PubMed  CAS  Google Scholar 

  97. Langseth AJ, Munji RN, Choe Y, et al. Wnts influence the timing and efficiency of oligodendrocyte precursor cell generation in the telencephalon. J Neurosci 2010;30:13367-13372.

    PubMed  CAS  Google Scholar 

  98. Kasai M, Satoh K, Akiyama T. Wnt signaling regulates the sequential onset of neurogenesis and gliogenesis via induction of BMPs. Genes Cells 2005;10:777-783.

    PubMed  CAS  Google Scholar 

  99. Chew LJ, Shen W, Ming X, et al. SRY-box containing gene 17 regulates the Wnt/beta-catenin signaling pathway in oligodendrocyte progenitor cells. J Neurosci 2011;31:13921-13935.

    PubMed  CAS  Google Scholar 

  100. Ye F, Chen Y, Hoang T, et al. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat Neurosci 2009;12:829-838.

    PubMed  CAS  Google Scholar 

  101. Fancy SP, Baranzini SE, Zhao C, et al. Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 2009;23:1571-1585.

    PubMed  CAS  Google Scholar 

  102. Feigenson K, Reid M, See J, Crenshaw IE, Grinspan JB. Canonical Wnt signalling requires the BMP pathway to inhibit oligodendrocyte maturation. ASN Neuro 2011;3:e00061.

    PubMed  Google Scholar 

  103. Wu M, Hernandez M, Shen S, et al. Differential modulation of the oligodendrocyte transcriptome by sonic hedgehog and bone morphogenetic protein 4 via opposing effects on histone acetylation. J Neurosci 2012;32:6651-6664.

    PubMed  CAS  Google Scholar 

  104. Tawk M, Makoukji J, Belle M, et al. Wnt/beta-catenin signaling is an essential and direct driver of myelin gene expression and myelinogenesis. J Neurosci 2011;31:3729-3742.

    PubMed  CAS  Google Scholar 

  105. Huang JK, Jarjour AA, Nait Oumesmar B, et al. Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat Neurosci 2011;14:45-53.

    PubMed  CAS  Google Scholar 

  106. Germain P, Chambon P, Eichele G, et al. International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol Rev 2006;58:760-772.

    PubMed  Google Scholar 

  107. Konig R, Stillfried M, Aperdannier P, et al. Expression of retinoid X receptor beta is induced in astrocytes during corpus callosum demyelination. J Chem Neuroanat 2012;43:120-132.

    PubMed  Google Scholar 

  108. Goudarzvand M, Javan M, Mirnajafi-Zadeh J, Mozafari S, Tiraihi T. Vitamins E and D3 attenuate demyelination and potentiate remyelination processes of hippocampal formation of rats following local injection of ethidium bromide. Cell Mol Neurobiol 2010;30:289-299.

    PubMed  CAS  Google Scholar 

  109. Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 2008;8:685-698.

    PubMed  CAS  Google Scholar 

  110. Spassky N, de Castro F, Le Bras B, et al. Directional guidance of oligodendroglial migration by class 3 semaphorins and netrin-1. J Neurosci 2002;22:5992-6004.

    PubMed  CAS  Google Scholar 

  111. Piaton G, Aigrot MS, Williams A, et al. Class 3 semaphorins influence oligodendrocyte precursor recruitment and remyelination in adult central nervous system. Brain 2011;134:1156-1167.

    PubMed  Google Scholar 

  112. Syed YA, Hand E, Mobius W, et al. Inhibition of CNS remyelination by the presence of semaphorin 3A. J Neurosci 2011;31:3719-3728.

    PubMed  CAS  Google Scholar 

  113. Williams A, Piaton G, Aigrot MS, et al. Semaphorin 3A and 3F: key players in myelin repair in multiple sclerosis? Brain 2007;130:2554-2565.

    PubMed  Google Scholar 

  114. Mi S, Lee X, Shao Z, et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 2004;7:221-228.

    PubMed  CAS  Google Scholar 

  115. Mi S, Miller RH, Lee X, et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 2005;8:745-751.

    PubMed  CAS  Google Scholar 

  116. Jepson S, Vought B, Gross CH, et al. LINGO-1, a transmembrane signaling protein, inhibits oligodendrocyte differentiation and myelination through intercellular self-interactions. J Biol Chem 2012;287:22184-22195.

    PubMed  CAS  Google Scholar 

  117. Lee X, Yang Z, Shao Z, et al. NGF regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte differentiation and myelination. J Neurosci 2007;27:220-225.

    PubMed  CAS  Google Scholar 

  118. Mi S, Miller RH, Tang W, et al. Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells. Ann Neurol 2009;65:304-315.

    PubMed  CAS  Google Scholar 

  119. Mi S, Hu B, Hahm K, et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in mog-induced experimental autoimmune encephalomyelitis. Nat Med 2007;13:1228-1233.

    PubMed  CAS  Google Scholar 

  120. Pepinsky RB, Shao Z, Ji B, et al. Exposure levels of anti-LINGO-1 Li81 antibody in the central nervous system and dose-efficacy relationships in rat spinal cord remyelination models after systemic administration. J Pharmacol Exp Ther 2011;339:519-529.

    PubMed  CAS  Google Scholar 

  121. Zimmermann DR, Dours-Zimmermann MT. Extracellular matrix of the central nervous system: from neglect to challenge. Histochem Cell Biol 2008;130:635-653.

    PubMed  CAS  Google Scholar 

  122. Oh LY, Larsen PH, Krekoski CA, et al. Matrix metalloproteinase-9/gelatinase B is required for process outgrowth by oligodendrocytes. J Neurosci 1999;19:8464-8475.

    PubMed  CAS  Google Scholar 

  123. Larsen PH, Wells JE, Stallcup WB, Opdenakker G, Yong VW. Matrix metalloproteinase-9 facilitates remyelination in part by processing the inhibitory NG2 proteoglycan. J Neurosci 2003;23:11127-11135.

    PubMed  CAS  Google Scholar 

  124. Back SA, Tuohy TM, Chen H, et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 2005;11:966-972.

    PubMed  CAS  Google Scholar 

  125. Sloane JA, Batt C, Ma Y, et al. Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc Natl Acad Sci U S A 2010;107:11555-11560.

    PubMed  CAS  Google Scholar 

  126. Siebert JR, Osterhout DJ. The inhibitory effects of chondroitin sulfate proteoglycans on oligodendrocytes. J Neurochem 2011;119:176-188.

    PubMed  CAS  Google Scholar 

  127. Lau LW, Keough MB, Haylock-Jacobs S, et al. Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination. Ann Neurol 2012;72:419-432.

    Google Scholar 

  128. Zuo J, Neubauer D, Dyess K, Ferguson TA, Muir D. Degradation of chondroitin sulfate proteoglycan enhances the neurite-promoting potential of spinal cord tissue. Exp Neurol 1998;154:654-662.

    PubMed  CAS  Google Scholar 

  129. Bradbury EJ, Moon LD, Popat RJ, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 2002;416:636-640.

    PubMed  CAS  Google Scholar 

  130. Siebert JR, Stelzner DJ, Osterhout DJ. Chondroitinase treatment following spinal contusion injury increases migration of oligodendrocyte progenitor cells. Exp Neurol 2011;231:19-29.

    PubMed  CAS  Google Scholar 

  131. Laabs TL, Wang H, Katagiri Y, et al. Inhibiting glycosaminoglycan chain polymerization decreases the inhibitory activity of astrocyte-derived chondroitin sulfate proteoglycans. J Neurosci 2007;27:14494-14501.

    PubMed  CAS  Google Scholar 

  132. Grimpe B, Silver J. A novel DNA enzyme reduces glycosaminoglycan chains in the glial scar and allows microtransplanted dorsal root ganglia axons to regenerate beyond lesions in the spinal cord. J Neurosci 2004;24:1393-1397.

    PubMed  CAS  Google Scholar 

  133. Shen Y, Tenney AP, Busch SA, et al. PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 2009;326:592-596.

    PubMed  CAS  Google Scholar 

  134. Fisher D, Xing B, Dill J, et al. Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J Neurosci 2011;31:14051-14066.

    PubMed  CAS  Google Scholar 

  135. Dickendesher TL, Baldwin KT, Mironova YA, et al. NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat Neurosci 2012;15:703-712.

    PubMed  CAS  Google Scholar 

  136. Fernandez O, Alvarez-Cermeno JC, Arroyo-Gonzalez R, et al. Review of the novelties presented at the 27th Congress of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) (II). Rev Neurol 2012;54:734-749.

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Multiple Sclerosis Society of Canada for the support of operating funds that have enabled the remyelination work to be conducted in the authors’ laboratory. M.B.K. is funded by an MD/PhD studentship from the Multiple Sclerosis Society of Canada and the Alberta Innovates – Health Solutions. V.W.Y. acknowledges the salary support of the Canada Research Chair (Tier 1) program.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Wee Yong.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 510 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keough, M.B., Yong, V.W. Remyelination Therapy for Multiple Sclerosis. Neurotherapeutics 10, 44–54 (2013). https://doi.org/10.1007/s13311-012-0152-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-012-0152-7

Keywords

Navigation