Skip to main content
Log in

Strategies for reducing airborne pesticides under tropical conditions

  • Perspective
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

Brazil is currently one of the largest pesticide consumers worldwide. However, a lack of scientific information regarding airborne pollution is still an issue, with tragic consequences to human health and the environment. To reduce pollution of the lower air layers, where pesticide spraying occurs, green barriers that filter the air could be an effective mitigation procedure. Modifying pulverization habits, by pulverizing in the late afternoon instead of in the morning could also reduce pesticide volatilization, while other recommendations with the purpose of lowering the pesticide amounts currently applied are likewise pursued. Data obtained about volatilization have demonstrated that, in order to reduce air pollution risks, one of the most effective preventive strategies is to ban products with high vapor pressure. Global/local stakeholders need to assume the responsibility to find the best way to reduce airborne pesticide pollution, which has increasingly shown disastrous effects as major poisons to human health and the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrade Filho, A., and S.D. Souza. 2013. Anticolinesterásicos. In Toxicologia na Pratica Clinica Folium, 89–98, 2nd edn.

  • Bedos, C., P. Cellier, R. Calvet, E. Barriuso, and G. Gabrielle. 2002. Mass transfer of pesticides into the atmosphere by volatilization from soils and plants: Overview. Agronomie 22: 21–33.

    Article  Google Scholar 

  • Bicalho, S.T.T., and T. Langenbach. 2013. The fate of tebuthiuron in microcosm with riparian forest seedlings. Geoderma 207–208: 66–70.

    Article  CAS  Google Scholar 

  • Bicalho, S., T. Langenbach, R. Rodrigues, F. Correia, A. Hagler, M. Matallo, and L. Luchini. 2010. Herbicide distribution in soils of a riparian forest and neighboring sugar cane field. Geoderma 198: 392–397.

    Article  CAS  Google Scholar 

  • Coronado, G.D., S. Holte, E. Vigoren, W.C. Griffith, D. Barr, E. Faustman, and B. Thompson. 2011. Organophosphate pesticide exposure and residential proximity to nearby fields: Evidence for the drift pathway. Journal of Occupational and Environmental Medicine 53: 884–891.

    Article  CAS  Google Scholar 

  • Correa, F.V., A. Macrae, L.R.G. Guilherme, and T. Langenbach. 2007. Atrazine sorption and fate in an Ultisol from humid tropical Brazil. Chemosphere 67: 847–854.

    Article  CAS  Google Scholar 

  • Costa, D., T. Campos, T. Langenbach, and A. Haddad-Nudi. 2016. Aplicação e volatilização do 2,4-D na superfície de solos em diferentes horários. In Conference: XVIII Congresso Brasileiro de Mecânica dos Solos e Engenharia Geotécnica. Minas Gerais: ABMS

  • Daly, G.L., D. Ying, Y.D. Lei, C. Teixeira, D. Muir, L. Castillo, and F. Wania. 2007. Accumulation of current-use pesticides in neotropical montain forests. Environmental Science Technolology 41: 1118–1123.

    Article  CAS  Google Scholar 

  • Faria, N.M.X., A.G. Fassa, and L.A. Facchini. 2007. Pesticides poisoning in Brazil: The official notification system and challenges to conducting epidemiological studies. Ciência & Saúde Coletiva 12: 25–38.

    Article  Google Scholar 

  • FOCUS. 2008. Pesticides in air: Considerations for exposure assessment. Report prepared by the Working Group on Pesticides in Air (FOCUS Air Group).

  • Freemark, K., and C. Boutin. 1995. Impacts of agriculture herbicide use on terrestrial wildlife in temperate landscapés: A reviews with special reference to North América Agriculture Ecosystem. Environment. 52: 57–91.

    Google Scholar 

  • Gandolfo, M.A., R.G. Chechetto, F.K. Carvalho, U.D. Gandolfo, and E.D. Moraes. 2013. Influence on spray drift of nozzles and adjuvants with a glyphosate spray solution. Revista Ciência Agronômica 44: 474–480.

    Article  Google Scholar 

  • Garcerá, C., C. Román, E. Moltó, R. Abad, J.A. Insa, X. Torrent, S. Planas, and P. Chueca. 2017. Comparison between standard and drift reducing nozzles for pesticide application in citrus: Part II. Effects on canopy spray distribution, control efficacy of Aonidiella aurantii (Maskell), beneficial parasitoids and pesticide residues on fruit. Crop Protection 94: 83–96.

    Article  Google Scholar 

  • Gil, Y., and C. Sinfort. 2005. Emission of pesticides to the air during sprayer application. A bibliographic review. Atmospheric Environment. 39: 5183–5193.

    Article  CAS  Google Scholar 

  • Giles, D., P. Klassen, F. Niederholzer, and D. Downey. 2011. Smart sprayer technology provides environmental economic benefits in California Orchards. Report, Division of Agriculture and Natural Resources of the University of California.

  • Glotfelty, D.E., A.W. Taylor, B.C. Turner, and W.H. Zoller. 1984. Volatilization of surface-applied pesticides from fallow soil. Journal of Agricultural and Food Chemistry 32: 638–643.

    Article  CAS  Google Scholar 

  • Glotfelty, E., J. Shomburg, M. McChesney, C. Sajebil, and N. Seiber. 1990. Studies of the distribution, drift, and volatilization of diazinon resulting from spray application to a dormant peach orchard. Chemosphere 21: 1303–1314.

    Article  CAS  Google Scholar 

  • Grob, A. 1995. A structural model of environmental attitudes and behavior. Journal of Environmental Psychology. 15: 209–220.

    Article  Google Scholar 

  • Hart, K., and D. Pimentel. 2002. Public health and cost of pesticides. In Encyclopedia of Pest Managemented, ed. D. Pimentel, 677–679. New York: Marcel Dekker.

    Google Scholar 

  • Hassink, J., J.A. Guth, F.J. Reischmann, R. Allen, D. Arnold, C.R. Leake, M. Skidmore, and G.L. Reeves. 2003. Vapour pressure and volatile losses of plant protection products from plants and soil. In Proceedings of the XII Symposium Pesticide Chemistry, eds. Del Rey A., A.M. Capri, E. Padovani, L., and M. Trevisan, 359–366, Piacenza, Italy.

  • Jong, F., G. Snoo, and J. Zande. 2008. Estimated nationwide effects of pesticide spray drift on terrestrial habitats in the Netherland. Journal Environmental Management. 86: 721–730.

    Article  CAS  Google Scholar 

  • Kasiotis, K., C. Glassw, A. Tsakirakis, and K. Machera. 2014. Spray drift reduction under Southern European conditions: A pilot study in the Ecopest project in Greece. Science of Total Environment. 479–480: 132–137.

    Article  CAS  Google Scholar 

  • Kulshreshtha, S., and J. Kort. 2009. External economic benefits and social goods from prairie shelterbelts. Agroforestry Systems 75: 39–47.

    Article  Google Scholar 

  • Laabs, V., W. Amelung, A.A. Pinto, M. Wantzen, C.J. Silva, and W. Zech. 2002. Pesticides in surface water, sediment, and rainfall of northeastern Pantanal Basin in Brazil. Journal of Environmental Quality 31: 1636–1648.

    Article  CAS  Google Scholar 

  • Langenbach, T., D. Mano, M.M. Campos, A.L.M. Cunha, and M.P. De Campos. 2017. Pesticide dispersion by spraying under tropical conditions. Journal of Environmental Science and Health Part B 52: 843–849.

    Article  CAS  Google Scholar 

  • Larsson, M, K. Boye, T. Nanos, M. Kreuger, and J. Boye. 2017. https://www.slu.se/globalassets/ew/org/centrb/ckb/publikationer/postrar/poster-york—swedish-environmental-monitoring-program.pdf19).

  • Lazzaro, L., S. Otto, and G. Zanin. 2008. Role of hegedrows in intercepting spray drift: evaluation and modelling of the effects. Agriculture, Ecosystem, Environment. 123: 317–327.

    Article  Google Scholar 

  • Leuchner, C. 2002. Air humidity as an ecological factor for woodland herb: leaf water, nutrient uptake, leaf anatomy, and productivity of eight species grown at low or high vdp levels. Flora 197: 262–274.

    Article  Google Scholar 

  • Lichiheb, N., E. Personne, C. Bedos, and E. Barriuso. 2014. Adaptation of a resistive model to pesticide volatilization from plants at the field scale: Comparison with a dataset. Atmosphere Environment. 83: 260–268.

    Article  CAS  Google Scholar 

  • Luo, Y., and M. Zhang. 2009. Multimedia transport and risk assessment of organophosphate pesticides and a case study in the northern San Joaquin Valley of California. Chemosphere 75: 969–978.

    Article  CAS  Google Scholar 

  • Marinho, D.A., S.T. Bicalho, E.M. Ferreira, and T. Langenbach. 2011. Distribution and Mineralization of 14C-Hexazinone in Soil Microcosm with the Riparian Forest Specie Cecropia hololeuca. Journal of Bioremediation & Biodegradation. https://doi.org/10.4172/2155-6199.S1-002.

    Article  Google Scholar 

  • Meire, R.O., M. Khairy, A.C. Targino, P.M.A. Galvão, J.P.M. Torres, O. Malm, and R. Lohmann. 2016. Use of passive samplers to detect organochlorine pesticides in air and water at wetland mountain region sites (S-SE Brazil). Chemosphere 144: 2175–2182.

    Article  CAS  Google Scholar 

  • Mnif, W., A. Hassine, A. Bouaziz, A. Bartegi, O. Thomas, and R. Roig. 2011. Effect of endocrine disruptor pesticides: A review. International Journal Environmental Research Public Health 8: 2265–2303.

    Article  CAS  Google Scholar 

  • Nascimento, M.M., G.O. Rocha, and J.B. Andrade. 2017. Pesticides in fine airborne particles: From a green analysis method to atmospheric characterization and risk assessment. Scientific Reports 7: 2267. https://doi.org/10.1038/s41598-017-02518-1.

    Article  CAS  Google Scholar 

  • Ochieng, A.A., M.A. Dalvie, F. Little, and H. Kromhout. 2013. Relationship between environmental exposure to pesticides and anthropometric outcomes of boys in the rural Western Cape, South Africa. South African Medical Journal 103: 942.

    Article  CAS  Google Scholar 

  • Pimentel, D. 2005. Environmental and economic cost of the application of pesticides primary in the United States. Environmental Development Sustainability. 7: 229–252.

    Article  Google Scholar 

  • Pimentel, D., H. Acquay, M. Biltonen, P. Rice, M. Silva, J. Nelson, V. Lipner, S. Giordana, et al. 1993. Assessment of environment and economic impacts of pesticideuse. In The pesticide question: Environment, economics and ethics, ed. D. Pimentel, and H. Lehman, 47–84. New York: Chapman and Hall.

    Chapter  Google Scholar 

  • Pivato, A., A. Barausse, F. Zechinato, L. Palmeri, R. Raga, M. Lavagnolo, and R. Cossu. 2015. An integrated model–based approach to the risk assessment of pesticide drift from wineyards. Atmospheric Environment 111: 136–150.

    Article  CAS  Google Scholar 

  • Prada, P. 2015. Fateful harvest, why Brazil has a big appetite for risky pesticides. http://www.reuters.com/investigates/special-report/brazil-pesticides/. Accessed 20 January 2017.

  • Reimer, A.P., and L.S. Prokopy. 2012. Environmental attitudes and drift reduction behavior among commercial pesticide applicators in a U.S. agricultural landscape. Journal of Environmental Economics and Management 113: 361–369.

    Google Scholar 

  • Rosas A.C.S. 2003. Avaliação da dispersão de agrotóxicos no ar – estudo de caso em Nova Friburgo. Master Thesis, CESTEH/ENSP/FIOCRUZ. Avaliação da contaminação no ar por organofosforados em São Lourenço, Rio de Janeiro.

  • Rüdel, H. 1997. Volatilisation of pesticides from soil and plant surfaces. Chemosphere 35: 143–152.

    Article  Google Scholar 

  • Salcedo, R., C. Garcera, R. Granell, E. Molto, and P. Chueca. 2015. Description of the airflow produced by an air assisted sprayer during pesticide applications to citrus. Spanish Journal Agriculture Research. 13: 1–15.

    Google Scholar 

  • Santos, S., and A. Maciel. 2006. Proposta metodológica utilizando ferramentas de qualidade na navegação do processo de pulverização. Engenharia Agricola. 26: 1–10.

    Article  Google Scholar 

  • Sanusi, A., M. Millet, P. Mirabel, and H. Worthman. 2013. Comparison of atmospheric pesticide concentrations measured at three sampling sites: Local, regional and long-range transport. Science of Total Environment. 18: 263–277.

    Google Scholar 

  • Schampheleire, M., K. Baetans, D. Nuyttens, and P. Spanoghe. 2008. Spray drift measurements to evaluate the Belgian drift mitigation measures in field crops. Crop Protection 27: 577–589.

    Article  Google Scholar 

  • Streicher, J. 1997. Air concentrations and inhalation exposure to pesticides in the agricultural health pilot study. EPA/600/Sr-97/059.

  • Tatton, J.O.G., and J.H.A. Ruzicka. 1967. Organochlorine pesticides in antarctica. Nature 215: 346–348.

    Article  CAS  Google Scholar 

  • Thompson, J. 2011. Organophosphate pesticide exposure and residential proximity to nearby fields. Journal Occupational Environment Medicine 53: 884.

    Article  CAS  Google Scholar 

  • Torrent, X., C. Garcerá, E. Moltó, P. Chueca, R. Abad, C. Grafulla, C. Román, and S. Planas. 2017. Comparison between standard and drift reducing nozzles for pesticide application in citrus: Part I. Effects on wind tunnel and field spray drift. Crop Protection 96: 130–143.

    Article  Google Scholar 

  • Trentacoste, E., D. Connor, and M. Gomez-del-Campo. 2015. Review: Row orientation: Applications to productivity and design of hedgerows in horticultural and olive orchards. Scientia Horticulturae 187: 15–29.

    Article  Google Scholar 

  • Ucar, T., and F. Hall. 2001. Windbreaks as a pesticide drift mitigation strategy: A review. Pesticide Management Science. 57: 663–675.

    Article  CAS  Google Scholar 

  • Vanclooster, M., J.D. Piñeros-Garcet, J.J.T.I. Boesten, F. Van den Berg, M. Leistra, J. Smelt, N. Jarvis, S. Roulier, et al. 2003. APECOP: Effective approaches for adjustment of the pesticide risk index used in environmental policy in Flanders.

  • Van de Zande, C., J. Michielsen, H. Stallinga, and A. De Jong. 2000. The effect of windbreak height and air assistance on exposure of surface water via spray drift. In: Proceedings of the British Crop Protection Conference-Pest and Diseases 2000, 91–96. Brighton: UK.

  • Villa, S., C. Negrelli, V. Maggi, A. Finizio, and M. Vighi. 2006. Analysis of a firn core for assessing POP seasonal accumulation on an Alpine glacier. Ecotoxicology and Environmental Safety 63: 17–24.

    Article  CAS  Google Scholar 

  • World Bank. 2008. World development report: Agriculture for development. Washington, DC: TheWorld Bank.

    Google Scholar 

Download references

Acknowledgements

Financial support was from FAPERJ, PRONEX. We shall thank Dr. Aluisio Granato for the grateful comments in the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Querino Caldas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langenbach, T., Caldas, L.Q. Strategies for reducing airborne pesticides under tropical conditions. Ambio 47, 574–584 (2018). https://doi.org/10.1007/s13280-017-0997-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-017-0997-4

Keywords

Navigation