Skip to main content

Advertisement

Log in

Effect of catchment land use and soil type on the concentration, quality, and bacterial degradation of riverine dissolved organic matter

  • Report
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

We studied the effects of catchment characteristics (soil type and land use) on the concentration and quality of dissolved organic matter (DOM) in river water and on the bacterial degradation of terrestrial DOM. The share of organic soil was the strongest predictor of high concentrations of dissolved organic carbon, nitrogen, and phosphorus (DOC, DON, and DOP, respectively), and was linked to DOM quality. Soil type was more important than land use in determining the concentration and quality of riverine DOM. On average, 5–9 % of the DOC and 45 % of the DON were degraded by the bacterial communities within 2–3 months. Simultaneously, the proportion of humic-like compounds in the DOM pool increased. Bioavailable DON accounted for approximately one-third of the total bioavailable dissolved nitrogen, and thus, terrestrial DON can markedly contribute to the coastal plankton dynamics and support the heterotrophic food web.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Apple, J., and P. del Giorgio. 2007. Organic substrate quality as the link between bacterioplankton carbon demand and growth efficiency in a temperate salt-marsh estuary. International Society for Microbial Ecology 1: 729–742.

    CAS  Google Scholar 

  • Asmala, E., R. Autio, H. Kaartokallio, L. Pitkänen, C.A. Stedmon, and D. Thomas. 2013. Bioavailability of riverine dissolved organic matter in three Baltic Sea estuaries and the effect of catchment land use. Biogeosciences 10: 6969–6986.

    Article  CAS  Google Scholar 

  • Berggren, M., H. Laudon, and M. Jansson. 2007. Landscape regulation of bacterial growth efficiency in boreal freshwaters. Global Biogeochemical Cycles. doi:10.1029/2006GB002844.

    Google Scholar 

  • Berggren, M., H. Laudon, and M. Jansson. 2009. Aging of allochthonous organic carbon regulates bacterial production in unproductive boreal lakes. Limnology and Oceanography 54: 1333–1342.

    Article  CAS  Google Scholar 

  • Berggren, M., J.-F. Lapierre, and P. del Giorgio. 2012. Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients. Multidisciplinary Journal of Microbial Ecology 6: 984–993.

    CAS  Google Scholar 

  • Chantingy, M.H. 2003. Dissolved and water-extractable organic matter in soils: A review on the influence of land use and management practices. Geoderma 113: 357–380.

    Article  Google Scholar 

  • Coble, P. 1996. Characterization of marine and terrestrial DOM in seawater using excitation–emission matrix spectroscopy. Marine Chemistry 51: 325–346.

    Article  CAS  Google Scholar 

  • del Giorgio, P.A., and J.J. Cole. 1998. Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics 29: 503–541.

    Article  Google Scholar 

  • Dupont, N., and D.L. Aksnes. 2013. Centennial changes in water clarity of the Baltic Sea and the North Sea. Estuarine, Coastal and Shelf Science 131: 282–289.

    Article  CAS  Google Scholar 

  • European Environmental Agency. 2010. Corine Land Cover 2006 raster data. Retrieved 15 April, 2015, from http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster.

  • Fleming-Lehtinen, V., A. Räike, P. Kortelainen, P. Kauppila, and D.N. Thomas. 2014. Organic carbon concentration in the northern coastal Baltic Sea between 1975 and 2011. Estuaries and Coasts 38: 466–481.

    Article  Google Scholar 

  • Freeman, C., C.D. Evans, D.T. Monteith, B. Reynolds, and N. Fenner. 2001. Export of organic carbon from peat soils. Nature 412: 785.

    Article  CAS  Google Scholar 

  • Gasol, J.M., U.L. Zweifel, F. Peters, J.A. Fuhrman, and A. Hågström. 1999. Significance of size and nucleic acid content heterogeneity as measured by flow cytometry in natural planktonic bacteria. Applied and Environmental Microbiology 65: 4475–4483.

  • Goldman, J.C., D.A. Caron, and M.R. Dennet. 1987. Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnology and Oceanography 32: 1239–1252.

    Article  CAS  Google Scholar 

  • Graeber, D., J. Gelbrecht, M.T. Pusch, C. Anlanger, and D. von Schiller. 2012. Agriculture has changed the amount and composition of dissolved organic matter in Central European headwater streams. Science of the Total Environment 438: 435–446.

    Article  CAS  Google Scholar 

  • Grasshoff, K., M. Erhardt, and K. Kremling (eds.). 1983. Methods of seawater analysis. Weinheim: Verlag Chemie.

    Google Scholar 

  • Haas, L.W. 1982. Improved epifluorescence microscopy for observing planktonic micro-organisms. Annales de l’Institut océanographique (Paris) 58: 261–266.

  • Hänninen, S. 1997. Agricultural water protection project in the Vantaanjoki river area. Vantaanjoen ja Helsingin seudun vesiensuojeluyhdistys. Julkaisu nr. 41. Helsinki (In Finnish).

  • Hoikkala, L., P. Kortelainen, H. Soinne, and H. Kuosa. 2015. Dissolved organic matter in the Baltic Sea. Journal of Marine Sytems 142: 47–61.

    Article  Google Scholar 

  • Huang, M., T. Liang, Z. Ou-Yang, L. Wang, C. Zhang, and C. Zhu. 2011. Leaching losses of nitrate nitrogen and dissolved organic nitrogen from a yearly two crops system, wheat-maize, under monsoon situations. Nutrient Cycling in Agroecosystems 91: 77–89.

    Article  Google Scholar 

  • Huhta, E.L., and A. Jaakkola. 1994. The effect of crop and fertilization on the leaching of nutrients from a peatland in the Tohmajärvi leaching fields in 1983–87. Maatalouden tutkimuskeskus, Tiedote 20/93 (In Finnish).

  • IUSS Working Group WRB. 2014. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

  • Jørgensen, L., C.A. Stedmon, M.A. Granskog, and M. Middelboe. 2014. Tracing the long-term microbial production of recalcitrant fluorescent dissolved organic matter in seawater. Geophysical Research Letters 41: 2481–2488.

    Article  Google Scholar 

  • Kaiser, K., G. Guggenberger, and W. Zech. 1996. Sorption of DOM and DOM fractions to forest soils. Geoderma 74: 281–303.

    Article  Google Scholar 

  • Kawasaki, N., and R. Benner. 2006. Bacterial release of dissolved organic matter during cell growth and decline: Molecular origin and composition. Limnology and Oceanography 51: 2170–2180.

    Article  CAS  Google Scholar 

  • Kirchmann, H., J.A.E. Johnston, and L.F. Bergström. 2002. Possibilities for reducing nitrate leaching from agricultural land. Ambio 31: 404–408.

    Article  Google Scholar 

  • Kortelainen, P., T. Mattsson, L. Finér, M. Ahtiainen, S. Saukkonen, and T. Sallantus. 2006. Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquatic Sciences 68: 453–468.

    Article  CAS  Google Scholar 

  • Korth, F., B. Deutsch, I. Liskow, and M. Voss. 2012. Uptake of dissolved organic nitrogen by size-fractionated plankton along a salinity gradient from the North Sea to the Baltic Sea. Biogeochemistry 111: 347–360.

    Article  CAS  Google Scholar 

  • Laudon, H., S. Köhler, and I. Buffam. 2004. Seasonal TOC export from seven boreal catchments in northern Sweden. Aquatic Sciences 66: 223–230.

    Article  Google Scholar 

  • Lepistö, A., P. Kortelainen, and T. Mattsson. 2008. Increased organic C and N leaching in a northern boreal river basin in Finland. Global Biogeochemical Cycles. doi:10.1029/2007GB003175.

    Google Scholar 

  • Lignell, R., L. Hoikkala, and T. Lahtinen. 2008. Effects of inorganic nutrients, glucose and solar radiation on bacterial growth and exploitation of dissolved organic carbon and nitrogen in the northern Baltic Sea. Aquatic Microbial Ecology 51: 209–221.

    Article  Google Scholar 

  • Marie, D., F. Partensky, and D. Vaulot. 1996. Application of the novel nucleic acid dyes YOYO-1. YOPRO-1 and PicoGreen for flow cytometric analysis of marine prokaryotes. Applied Environmental Microbiology 62: 1649–1655.

    CAS  Google Scholar 

  • Mattsson, T., P. Kortelainen, and A. Räike. 2005. Export of DOM from boreal catchments: Impacts of land use cover and climate. Biogeochemistry 76: 373–394.

    Article  CAS  Google Scholar 

  • Mattsson, T., P. Kortelainen, A. Laubel, D. Evans, M. Pujo-Pay, A. Räike, and P. Conan. 2009. Export of dissolved organic matter in relation to land use along a European climatic gradient. Science of the Total Environment 407: 1967–1976.

    Article  CAS  Google Scholar 

  • Mattsson, T., P. Kortelainen, A. Räike, A. Lepistö, and D.N. Thomas. 2015. Spatial and temporal variability of organic C and N concentrations and export from 30 boreal rivers induced by land use and climate. Science of the Total Environment 508: 145–154.

    Article  CAS  Google Scholar 

  • Maurice, P.A., S.E. Cabaniss, J. Drummond, and E. Ito. 2002. Hydrogeochemical controls on the variations in chemical characteristics of natural organic matter at a small freshwater wetland. Chemical Geology 187: 59–77.

    Article  CAS  Google Scholar 

  • McDowell, W.H. 1998. Internal nutrient fluxes in a Puerto Rican rain forest. Journal of Tropical Ecology 14: 521–536.

    Article  Google Scholar 

  • McKnight, D., E. Boyer, P. Westerhoff, P. Doran, T. Kulbe, and D. Andersen. 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnology and Oceanography 46: 38–48.

    Article  CAS  Google Scholar 

  • Mobed, J.J., S.L. Hemmingsen, J.L. Autry, and L.B. McGown. 1996. Fluorescence characterization of IHSS humic substances: Total luminescence spectra with absorbance correction. Environmental Science & Technology 30: 3061–3065.

  • Norland, S. 1993. Relationship between biomass and volume of bacteria. In Handbook of methods in aquatic microbial ecology, ed. P. Kemp, B. Sherr, E. Sherr, and J. Cole, 303–306. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Pärn, J., and Ü. Mander. 2012. Increased organic carbon concentrations in Estonian rivers in the period 1992–2007 as affected by deepening droughts. Biogeochemistry 108: 351–358.

    Article  Google Scholar 

  • Räike, A., P. Kortelainen, T. Mattsson, and D.N. Thomas. 2012. 36 year trends in dissolved organic carbon export from Finnish rivers to the Baltic Sea. Science of the Total Environment 435–436: 188–201.

    Article  Google Scholar 

  • Romera-Castillo, C., H. Sarmento, X.A. Álvarez-Salgado, J.M. Gasol, and C. Marrasé. 2011. Net production and consumption of fluorescent colored dissolved organic matter by natural bacterial assemblages growing on marine phytoplankton exudates. Applied and Environmental Microbiology 77: 7490–7498.

    Article  CAS  Google Scholar 

  • Sandberg, J., A. Andersson, S. Johansson, and J. Wikner. 2004. Pelagic food web structure and carbon budget in the northern Baltic Sea: Potential importance of terrigenous carbon. Marine Ecology Progress Series 268: 13–29.

    Article  Google Scholar 

  • Seitzinger, S.P., R.W. Sanders, and R. Styles. 2002. Bioavailability of DON from natural and anthropogenic sources to estuarine plankton. Limnology and Oceanography 47: 353–366.

    Article  CAS  Google Scholar 

  • Stedmon, C.A., S. Markager, and H. Kaas. 2000. Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters. Estuarine, Coastal and Shelf Science 51: 267–278.

  • Stedmon, C.A., S. Markager, M. Sondergaard, T. Vang, A. Laubel, N.H. Borch, and A. Windelin. 2006. Dissolved Organic Matter (DOM) export to a temperate estuary: Seasonal variations and implications of land use. Estuaries and Coasts 29: 388–400.

    Article  CAS  Google Scholar 

  • Stepanauskas, R., N.O. Jørgensen, O.R. Eigaard, A. Žvikas, L.J. Tranvik, and L. Leonardson. 2002. Summer inputs of riverine nutrients to the Baltic Sea: Bioavailability and eutrophication relevance. Ecological Monographs 72: 579–597.

    Article  Google Scholar 

  • Straile, D. 1997. Gross growth efficiencies of protozoan and metazoan zooplankton and their dependence on food concentration, predator-prey weight ratio, and taxonomic group. Limnology and Oceanography 42: 1375–1385.

    Article  Google Scholar 

  • Tarboton, D., D. Watson, and R. Wallace. 2012. Terrain analysis using Digital Elevation Models (TauDEM). http://hydrology.usu.edu/taudem/taudem5/TauDEM_4_12.pptx.

  • Vähätalo, A.V., H. Aarno, and S. Mäntyniemi. 2010. Biodegradability continuum and biodegradation kinetics of natural organic matter described by beta distribution. Biogeochemistry 11: 227–240.

  • Vahtera, H., J. Männynsalo, and K. Lahti. 2014. Joint survey of the Vantaanjoki river—Water quality in 2011–2013. Vantaanjoen ja Helsingin seudun vesiensuojeluyhdistys ry. Julkaisu nr. 72 (In Finnish).

  • Van Kessel, C., T. Clough, and J.W. van Groenigen. 2009. Dissolved organic nitrogen: An overlooked pathway of nitrogen loss from agricultural system? Journal of Environmental Quality 38: 393–401.

    Article  Google Scholar 

  • Weishaar, J.L., G.R. Aiken, B.A. Bergamaschi, M.S. Fram, R. Fujii, and K. Mopper. 2003. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environmental Science and Technology 37: 4702–4708.

    Article  CAS  Google Scholar 

  • Wilson, H.F., and M.A. Xenopoulos. 2008. Ecosystem and seasonal control of stream dissolved organic carbon along a gradient of land use. Ecosystems 11: 555–568.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was a part of the MULTIDOM project funded by the Helsinki University Centre for environment HENVI. It has also been supported by the COCOA project (funded by the BONUS program for Baltic Sea research). The authors thank The Water Protection Association of the river Vantaanjoki and Helsinki Region (VHVSY) and especially limnologist Heli Vahtera for field support. Harri Kuosa, Hermanni Kaartokallio, and Riitta Autio are thanked for valuable consulting and Ville Paloheimo for graphical design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iida Autio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Autio, I., Soinne, H., Helin, J. et al. Effect of catchment land use and soil type on the concentration, quality, and bacterial degradation of riverine dissolved organic matter. Ambio 45, 331–349 (2016). https://doi.org/10.1007/s13280-015-0724-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-015-0724-y

Keywords

Navigation