Skip to main content

Advertisement

Log in

Overview: Capturing the Sun for Energy Production

  • Published:
AMBIO Aims and scope Submit manuscript

Abstract

Solar energy has potential to provide a major part of our energy for our future, as heat, electricity, and fuels. Most solar technologies are still at the research and development stage, however. There is therefore a need for bold and enduring efforts in research, development and commercialization, including strategic legislative measures and infrastructure investments. This overview article serves as an introduction to the present Special Report, briefly outlining the potential, principles and possibilities as well as some of the challenges of solar energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Total primary energy supply (International Energy Agency 2010). 1 TWh (terawatt hour) = 1 × 109 kWh, where 1 kWh = 1 kilowatt of power during 1 h. 140 000 TWh/year = 16 TW (16 × 1012 W) of average primary power consumption.

References

  • Cook, R.C., D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, and D.G. Nocera. 2010. Solar energy supply and storage for the nonlegacy worlds. Chemical Reviews 110: 6474–6502.

    Article  CAS  Google Scholar 

  • Edoff, M. 2012. Thin film solar cells—research in an industrial perspective. AMBIO. doi:10.1007/s13280-012-0265-6.

  • European Photovoltaic Industry Association. 2012. Market report. http://www.epia.org. Accessed 10 Feb 2012.

  • Fukui, T., M. Yoshimura, E. Nakai, and K. Tomioka. 2012. Position-controlled III–V compound semiconductor nanowire solar cells by selective-area metal-organic vapor phase epitaxy. AMBIO. doi:10.1007/s13280-012-0266-5.

  • Hagfeldt, A. 2012. Brief overview of dye-sensitized solar cells. AMBIO. doi:10.1007/s13280-012-0272-7.

  • Hammarström, L., and S. Hammes-Schiffer, eds. 2009. Artificial photosynthesis and solar fuels. Accounts of Chemical Research (Special issue) 42(12): 1859–2029.

  • Inganäs, O., F. Zhang, and M.R. Andersson. 2012. Alternating copolymers and alternative device geometries for organic photovoltaics. AMBIO. doi:10.1007/s13280-012-0276-3.

  • International Energy Agency. 2010. Key world energy statistics. http://www.iea.org/weo/. Accessed 10 Feb 2012.

  • Ito, S., H. Ohkita, H. Benten, and S. Honda. 2012. Spectroscopic analysis of NIR-dye sensitization in bulk heterojunction polymer solar sells. AMBIO. doi:10.1007/s13280-012-0268-3.

  • Katoh, R. 2012. Quantitative evaluation of electron injection efficiency in dye-sensitized TiO2 films. AMBIO. doi:10.1007/s13280-012-0270-9.

  • Lee, L.-T., S. Ito, H. Benten, H. Ohkita, and D. Mori. 2012. Current mode atomic force microscopy (C-AFM) study for local electrical characterization of conjugated polymer blends. AMBIO. doi:10.1007/s13280-012-0269-2.

  • Lindblad, P., P. Lindberg, P. Oliveira, K. Stensjö, and T. Heidorn. 2012. Design, engineering and construction of photosynthetic microbial cell factories for renewable solar fuel production. AMBIO. doi:10.1007/s13280-012-0274-5.

  • Masukawa, H., M. Kitashima, K. Inoue, H. Sakurai, and R.P. Hausinger. 2012. Genetic engineering of cyanobacteria to enhance biohydrogen production from sunlight and water. AMBIO. doi:10.1007/s13280-012-0275-4.

  • Nakano Y. 2012. Ultra-high efficiency photovoltaic cells for large scale solar power generation. AMBIO. doi:10.1007/s13280-012-0267-4.

  • Ozawa, H., H. Kawaguchi, Y. Okuyama, and H. Arakawa. 2012. Characterization of photovoltaic performance of the dye-sensitized solar cell with a novel Ruthenium complex having a bisdemethoxycurcumin as a ligand. AMBIO. doi:10.1007/s13280-012-0271-8.

  • Roeb, M., M. Neises, N. Monnerie, C. Sattler, and R. Pitz-Paal. 2011. Technologies and trends in solar power and fuels. Energy & Environmental Science 4: 2503–2511.

    Article  CAS  Google Scholar 

  • RSAS Energy Committee. 2010. Energy resources and their utilization in a 40-year perspective up to 2050. http://www.kva.se/en/Science-in-Society/Energy-Committee/Energy-scenarios/. Accessed 10 Feb 2012.

  • Styring, S. 2012. Solar fuels: Visions and concepts. AMBIO. doi:10.1007/s13280-012-0273-6.

  • Swedish Energy Agency. 2009. Energy indicators. http://energimyndigheten.se/en/Facts-and-figures1/Publications/. Accessed 10 Feb 2012.

  • Tamaura, Y. 2012 Conversion of concentrated solar thermal energy into chemical energy. AMBIO. doi:10.1007/s13280-012-0264-7.

  • US Energy Information Administration. 2011. International energy outlook. http://www.eia.gov/forecasts/ieo/. Accessed 10 Feb 2012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Hammarström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammarström, L. Overview: Capturing the Sun for Energy Production. AMBIO 41 (Suppl 2), 103–107 (2012). https://doi.org/10.1007/s13280-012-0263-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-012-0263-8

Keywords

Navigation