Skip to main content
Log in

Stream graphs and link streams for the modeling of interactions over time

  • Original Article
  • Published:
Social Network Analysis and Mining Aims and scope Submit manuscript

Abstract

Graph theory provides a language for studying the structure of relations, and it is often used to study interactions over time too. However, it poorly captures the intrinsically temporal and structural nature of interactions, which calls for a dedicated formalism. In this paper, we generalize graph concepts to cope with both aspects in a consistent way. We start with elementary concepts like density, clusters, or paths, and derive from them more advanced concepts like cliques, degrees, clustering coefficients, or connected components. We obtain a language to directly deal with interactions over time, similar to the language provided by graphs to deal with relations. This formalism is self-consistent: usual relations between different concepts are preserved. It is also consistent with graph theory: graph concepts are special cases of the ones we introduce. This makes it easy to generalize higher level objects such as quotient graphs, line graphs, k-cores, and centralities. This paper also considers discrete versus continuous time assumptions, instantaneous links, and extensions to more complex cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. Unless explicitly specified, we always consider simple and undirected graphs and stream graphs; we discuss more general cases in Sect. 20.

  2. A partition of a set X into k parts is a family \((P_1, P_2, \ldots , P_k)\) of k subsets of X, such that \(\cup _i P_i = X\) and \(P_i \cap P_j = \emptyset\) for all \(i\ne j\).

  3. This is a generalization to stream graphs of the \(\Delta\)-density introduced in Viard and Latapy (2014) for link streams.

References

  • Barabási A-L, Pósfai M (2016) Network science. Cambridge University Press, Cambridge

    Google Scholar 

  • Barrat A, Cattuto C (2013) Temporal networks of face-to-face human interactions. Springer, Berlin, Heidelberg, pp 191–216

    Google Scholar 

  • Batagelj V, Praprotnik S (2016) An algebraic approach to temporal network analysis based on temporal quantities. Social Netw Anal Mining 6(1):28:1–28:22

    MATH  Google Scholar 

  • Berge C (1962) The theory of graphs and its applications. Wiley, New York

    MATH  Google Scholar 

  • Bhadra S, Ferreira A (2012) Computing multicast trees in dynamic networks and the complexity of connected components in evolving graphs. J Internet Serv Appl 3(3):269–275

    Article  Google Scholar 

  • Blondel VD, Decuyper A, Krings G (2015) A survey of results on mobile phone datasets analysis. EPJ Data Sci 4(1):10

    Article  Google Scholar 

  • Blonder B, Wey TW, Dornhaus A, James R, Sih A (2012) Temporal dynamics and network analysis. Methods Ecol Evol 3(6):958–972

    Article  Google Scholar 

  • Bondy JA (1976) Graph Theory Appl. Elsevier Science Ltd., Oxford

    Google Scholar 

  • Bui-Xuan B-M, Ferreira A, Jarry A (2003) Computing shortest, fastest, and foremost journeys in dynamic networks. Int J Found Comput Sci 14(2):267–285

    Article  MathSciNet  MATH  Google Scholar 

  • Butts CT (2008) A relational event framework for social action. Sociol Methodol 38(1):155–200

    Article  Google Scholar 

  • Caceres RS, Berger-Wolf T (2013) Temporal scale of dynamic networks. Springer, Berlin, Heidelberg, pp 65–94

    Book  Google Scholar 

  • Casteigts A, Flocchini P, Mans B, Santoro N (2015) Shortest, fastest, and foremost broadcast in dynamic networks. Int J Found Comput Sci 26(4):499–522

    Article  MathSciNet  MATH  Google Scholar 

  • Casteigts A, Flocchini P, Quattrociocchi W, Santoro N (2012) Time-varying graphs and dynamic networks. IJPEDS 27(5):387–408

    Google Scholar 

  • Chinelate CE, Borges VA, Klaus W, Artur Z, da Silva APC (2015) Time centrality in dynamic complex networks. Adv Complex Syst 18(7–8):1550023

    MathSciNet  Google Scholar 

  • Conan V, Leguay J, Friedman T (2007) Characterizing pairwise inter-contact patterns in delay tolerant networks. In: Proceedings of the 1st international conference on autonomic computing and communication systems, autonomics ’07, pages 19:1–19:9, ICST, Brussels, Belgium, Belgium. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering)

  • Corneli M, Latouche P, Rossi F (2016) Block modelling in dynamic networks with non-homogeneous poisson processes and exact icl. Social Netw Anal Mining 6(1):55

    Article  Google Scholar 

  • Corneli M, Latouche P, Rossi F (2015) Modelling time evolving interactions in networks through a non stationary extension of stochastic block models. In: ASONAM '15 Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining 2015, pp 1590–1591

  • David E, Jon K (2010) Networks, crowds, and markets: reasoning about a highly connected world. Cambridge University Press, New York

    MATH  Google Scholar 

  • Diestel R (2012) Graph theory, 4th edn, volume 173 of Graduate texts in mathematics. Springer, New York

  • Doreian P, Stokman F (1997) Evolution of social networks. The journal of mathematical sociology, vol 1. Gordon and Breach Publishers, Amsterdam

    MATH  Google Scholar 

  • Dutta BL, Ezanno P, Vergu E (2014) Characteristics of the spatio-temporal network of cattle movements in France over a 5-year period. Prev Vet Med 117(1):79–94

    Article  Google Scholar 

  • Flores J, Romance M (2017) On eigenvector-like centralities for temporal networks: discrete vs. continuous time scales. J Comput Appl Math 330:1041–1051

    Article  MathSciNet  MATH  Google Scholar 

  • Gaumont N, Magnien C, Latapy M (2016a) Finding remarkably dense sequences of contacts in link streams. Social Netw Anal Mining 6(1):87:1–87:14

    Google Scholar 

  • Gaumont N, Viard T, Fournier-S’niehotta R, Wang Q, Latapy M (2016b) Analysis of the temporal and structural features of threads in a mailing-list. Springer International Publishing, Cham, pp 107–118

    Google Scholar 

  • Gauvin L, Panisson A, Cattuto C (2014) Detecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approach. PLOS One 9(1):1–13

    Article  Google Scholar 

  • George B, Kim S (2013) Spatio-temporal Networks: modeling and algorithms. SpringerBriefs in Computer Science. Springer, New York

    Book  MATH  Google Scholar 

  • Gomes LH, Almeida VAF, Almeida JM, Castro FDO, Bettencourt LA (2009) Quantifying social and opportunistic behavior in email networks. Adv Complex Syst 12(01):99–112

    Article  Google Scholar 

  • Gulyás L, Kampis G, Legendi RO (2013) Elementary models of dynamic networks. Eur Phys J Spec Top 222(6):1311–1333

    Article  Google Scholar 

  • Hamon R, Borgnat P, Flandrin P, Robardet C (2015) Duality between temporal networks and signals: Extraction of the temporal network structures. CoRR. https://arxiv.org/abs/1505.03044

  • Harshaw CR, Bridges RA, Iannacone MD, Reed JW, Goodall JR (2016) Graphprints: towards a graph analytic method for network anomaly detection. In: Proceedings of the 11th annual cyber and information security research conference, CISRC ’16, ACM, New York, NY, USA, pp 15:1–15:4

  • Hernández-Orallo E, Cano JC, Calafate CT, Manzoni P (2016) New approaches for characterizing inter-contact times in opportunistic networks. Ad Hoc Netw 52:160–172 (Modeling and Performance Evaluation of Wireless Ad Hoc Networks)

    Article  Google Scholar 

  • Holme P (2015) Modern temporal network theory: a colloquium. Eur Phys J B 88(9):234

    Article  Google Scholar 

  • Holme P, Saramäki J (2012) Temporal networks. Phys Rep 519(3):97–125 (Temporal Networks)

    Article  Google Scholar 

  • Huanhuan W, Cheng J, Huang S, Ke Y, Yi L, Yanyan X (2014) Path problems in temporal graphs. Proc VLDB Endow 7(9):721–732

    Article  Google Scholar 

  • Hulovatyy Y, Chen H, Milenkovic T (2016) Exploring the structure and function of temporal networks with dynamic graphlets. Bioinformatics 32(15):2402

    Article  Google Scholar 

  • Karsai M, Kivelä M, Pan RK, Kaski K, Kertész J, Barabási A-L, Saramäki J (2011) Small but slow world: How network topology and burstiness slow down spreading. Phys Rev E 83:025102

    Article  Google Scholar 

  • Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2(3):203–271

    Article  Google Scholar 

  • Kivelä M, Cambe J, Saramäki J, Karsai M (2018) Mapping temporal-network percolation to weighted, static event graphs. Sci Rep 8:12357. https://doi.org/10.1038/s41598-018-29577-2

    Article  Google Scholar 

  • Kostakos V (2009) Temporal graphs. Physica A Stat Mech Appl 388(6):1007–1023

    Article  MathSciNet  Google Scholar 

  • Kovanen L, Karsai M, Kaski K, Kertész J, Saramäki J (2011) Temporal motifs in time-dependent networks. J Stat Mech Theory Exp 2011(11):P11005

    Article  Google Scholar 

  • Kovanen L, Kaski K, Kertész J, Saramäki J (2013) Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences. PNAS 110(45):18070–18075. https://doi.org/10.1073/pnas.1307941110

    Article  Google Scholar 

  • Krings G, Karsai M, Bernhardsson S, Blondel VD, Saramäki J (2012) Effects of time window size and placement on the structure of an aggregated communication network. EPJ Data Sci 1(1):4

    Article  Google Scholar 

  • Latapy M, Magnien C, Del Vecchio N (2008) Basic notions for the analysis of large two-mode networks. Soc Netw 30(1):31–48

    Article  Google Scholar 

  • Laurent G, Saramäki J, Karsai M (2015) From calls to communities: a model for time-varying social networks. Eur Phys J B 88(11):301

    Article  MathSciNet  Google Scholar 

  • Leskovec J, Kleinberg JM, Faloutsos C (2007) Graph evolution: densification and shrinking diameters. TKDD 1(1):2

    Article  Google Scholar 

  • Leskovec J, Backstrom L, Kumar R, Tomkins A (2008) Microscopic evolution of social networks. In: Ying L, Bing L, Sunita S (eds) Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, Las Vegas, Nevada, USA, Aug 24–27, pp 462–470

  • Léo Y, Crespelle C, Fleury E (2015) Non-altering time scales for aggregation of dynamic networks into series of graphs. In Felipe Huici and Giuseppe Bianchi, editors, Proceedings of the 11th ACM conference on emerging networking experiments and technologies, CoNEXT 2015, ACM, Heidelberg, Germany, Dec 1–4, 2015, pp 29:1–29:7

  • Magnien C, Tarissan F (2015) Time evolution of the importance of nodes in dynamic networks. In: ASONAM '15 Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining 2015. ACM, New York, pp 1200–1207

  • Martinet L, Crespelle C, Fleury E (2014) Dynamic contact network analysis in hospital wards. Springer International Publishing, Cham, pp 241–249

    Google Scholar 

  • Masuda N, Lambiotte R (2016) A guide to temporal networks. Series on complexity science, vol 4. World Scientific, UK

    Book  MATH  Google Scholar 

  • Matias C, Miele V (2017) Statistical clustering of temporal networks through a dynamic stochastic block model. J R Stat Soc Ser B 79:1119–1141

    Article  MathSciNet  MATH  Google Scholar 

  • Michail O (2015) An introduction to temporal graphs: an algorithmic perspective. Springer International Publishing, Cham, pp 308–343

    MATH  Google Scholar 

  • Newman MEJ (2001) Clustering and preferential attachment in growing networks. Phys Rev E 64:025102

    Article  Google Scholar 

  • Newman M (2010) Networks: an introduction. Oxford University Press Inc, New York

    Book  MATH  Google Scholar 

  • Nicosia V, Tang J, Musolesi M, Russo G, Mascolo C, Latora V (2012) Components in time-varying graphs. Chaos: an Interdisciplinary. J Nonlinear Sci 22(2):023101

    MATH  Google Scholar 

  • Nicosia V, Tang J, Mascolo C, Musolesi M, Russo G, Latora V (2013) Graph metrics for temporal networks. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 15–40

  • Paranjape A, Benson AR, Leskovec J (2017) Motifs in temporal networks. In: de Rijke M, Shokouhi M, Tomkins A, Zhang M (eds) Proceedings of the Tenth ACM international conference on web search and data mining, WSDM 2017, Cambridge, United Kingdom, February 6–10, pp 601–610

  • Payen A, Tabourier L, Latapy M (2017) Impact of temporal features of cattle exchanges on the size and speed of epidemic outbreaks. In: Osvaldo G, Beniamino M, Sanjay M, Giuseppe B, Carmelo Maria T, Ana Maria ACR, David T, Bernady OA, Elena NS, Alfredo C (eds) Computational science and its applications—ICCSA 2017—17th International Conference, Trieste, Italy, July 3-6, 2017, Proceedings, Part II, volume 10405 of Lecture Notes in Computer Science. Springer, New York, pp 84–97

  • Pei J, Silvestri F, Tang J (eds) (2015) Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2015, ACM. Paris, France, August 25–28, 2015

  • Perry PO, Wolfe PJ (2013) Point process modelling for directed interaction networks. J R Stat Soc Ser B (Statistical Methodology) 75(5):821–849

    Article  MathSciNet  MATH  Google Scholar 

  • Praprotnik S, Batagelj V (2016) Semirings for temporal network analysis. CoRR https://arxiv.org/abs/1603.08261

  • Ribeiro B, Perra N, Baronchelli A (2013) Quantifying the effect of temporal resolution on time-varying networks. Sci Rep 3:3006

    Article  Google Scholar 

  • Rocha LEC, Masuda N (2014) Random walk centrality for temporal networks. N J Phys 16(6):063023

    Article  MathSciNet  Google Scholar 

  • Rozenshtein P, Tatti N, Gionis A (2017) Finding dynamic dense subgraphs. ACM Trans Knowl Discov Data 11(3):271–2730

    Article  Google Scholar 

  • Santoro N, Quattrociocchi W, Flocchini P, Casteigts A, Amblard F (2011) Time-varying graphs and social network analysis: Temporal indicators and metrics. In: 3rd AISB social networks and multiagent systems symposium (SNAMAS), pp 32–38

  • Saramäki J, Holme P (2015) Exploring temporal networks with greedy walks. Eur Phys J B 88(12):334

    Article  Google Scholar 

  • Scholtes I, Wider N, Garas A (2016) Higher-order aggregate networks in the analysis of temporal networks: path structures and centralities. Eur Phys J B 89(3):61

    Article  Google Scholar 

  • Scott J (2017) Social network analysis. SAGE Publications, Thousand Oaks

    Google Scholar 

  • Sikdar S, Ganguly N, Mukherjee A (2015) Time series analysis of temporal networks. CoRR https://arxiv.org/abs/1512.01344

  • Sizemore AE, Bassett DS (2018) Dynamic graph metrics: tutorial, toolbox, and tale. NeuroImage 180:417–427

    Article  Google Scholar 

  • Snijders TAB (2001) The statistical evaluation of social network dynamics. Sociol Methodol 31(1):361–395

    Article  Google Scholar 

  • Snijders TAB, van de Bunt GG, Steglich. CEG (2010) Introduction to stochastic actor-based models for network dynamics. Soc Netw 32(1):44–60 (Dynamics of Social Networks)

    Article  Google Scholar 

  • Stadtfeld C, Block P (2017) Interactions, actors, and time: dynamic network actor models for relational events. Sociol Sci 4:318–352

    Article  Google Scholar 

  • Stadtfeld C, Hollway J, Block P (2017) Dynamic network actor models: investigating coordination ties through time. Sociol Methodol 47(1):1–40

    Article  Google Scholar 

  • Starnini M, Baronchelli A, Barrat A, Pastor-Satorras R (2012) Random walks on temporal networks. Phys Rev E 85:056115

    Article  Google Scholar 

  • Sun J, Tao D, Faloutsos C (2006) Beyond streams and graphs: dynamic tensor analysis. In: Tina ER, Lyle HU, Mark C, Dimitrios G (eds) Proceedings of the Twelfth ACM SIGKDD international conference on knowledge discovery and data mining, ACM, Philadelphia, PA, USA, Aug 20–23, 2006, pp 374–383

  • Takaguchi T, Yano Y, Yoshida Y (2016) Coverage centralities for temporal networks. Eur Phys J B 89(2):35

    Article  Google Scholar 

  • Tang J, Musolesi M, Mascolo C, Latora V (2010) Characterising temporal distance and reachability in mobile and online social networks. SIGCOMM Comput Commun Rev 40(1):118–124

    Article  Google Scholar 

  • Tang J, Scellato S, Musolesi M, Mascolo C, Latora V (2010) Small-world behavior in time-varying graphs. Phys Rev E 81:055101

    Article  Google Scholar 

  • Tang J, Musolesi M, Mascolo C, Latora V, Nicosia V (2010) Analysing information flows and key mediators through temporal centrality metrics. In: Proceedings of the 3rd workshop on social network systems, SNS ’10, ACM. New York, NY, USA, pp 3:1–3:6

  • Taylor D, Myers SA, Clauset A, Porter MA, Mucha PJ (2017) Eigenvector-based centrality measures for temporal networks. Multiscale Model Simul 15(1):537–574

    Article  MathSciNet  MATH  Google Scholar 

  • Thompson WH, Brantefors P, Fransson P (2017) From static to temporal network theory: applications to functional brain connectivity. Netw Neurosci 1(2):69–99

    Article  Google Scholar 

  • Tiphaine V, Raphaël FS (2018) Movie rating prediction using content-based and link stream features. CoRR, abs/1805.02893

  • Uddin S, Hossain L, Wigand RT (2014) New direction in degree centrality measure: towards a time-variant approach. Int J Inform Technol Decis Making 13(4):865

    Article  Google Scholar 

  • Uddin S, Khan A, Piraveenan M (2016) A set of measures to quantify the dynamicity of longitudinal social networks. Complexity 21(6):309–320

    Article  MathSciNet  Google Scholar 

  • Uddin MS, Mahendra P, Chung KSK, Hossain L (2013) Topological analysis of longitudinal networks. In: 46th Hawaii International Conference on System Sciences, HICSS 2013, Wailea, HI, USA, 7–10 January, 2013. pp 3931–3940

  • Viard T, Latapy M, Magnien C (2016) Computing maximal cliques in link streams. Theor Comput Sci 609:245–252

    Article  MathSciNet  MATH  Google Scholar 

  • Viard T, Fournier-S’niehotta R, Magnien C, Latapy M (2018) Discovering patterns of interest in IP traffic using cliques in bipartite link streams. In: Cornelius S, Coronges K, Gonçalves B, Sinatra R, Vespignani A (eds) Complex networks IX. CompleNet 2018. Springer proceedings in complexity. Springer, Cham

    Google Scholar 

  • Viard T, Latapy M (2014) Identifying roles in an IP network with temporal and structural density. In: 2014 Proceedings IEEE INFOCOM Workshops, IEEE, Toronto, ON, Canada, April 27–May 2, 2014, pp 801–806

  • Viard T, Latapy M, Magnien Cl (2015) Revealing contact patterns among high-school students using maximal cliques in link streams. In: ASONAM '15 Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining 2015. ACM, New York, pp 1517–1522

    Chapter  Google Scholar 

  • Wasserman S, Faust K (1994) Social network analysis: Methods and applications, vol 8. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Wehmuth K, Fleury É, Ziviani A (2016) Multiaspect graphs: algebraic representation and algorithms. Algorithms 10(4):1

    Article  MathSciNet  MATH  Google Scholar 

  • Wehmuth K, Fleury É, Ziviani A (2016) On multiaspect graphs. Theor Comput Sci 651:50–61

    Article  MathSciNet  MATH  Google Scholar 

  • Wehmuth K, Ziviani A, Fleury E (2015) A unifying model for representing time-varying graphs. In: 2015 IEEE international conference on data science and advanced analytics, DSAA 2015, Campus des Cordeliers, IEEE, Paris, France, October 19–21, 2015, pp 1–10

  • West DB (2000) Introduction to graph theory, 2nd edn. Prentice Hall, Prentice

    Google Scholar 

  • Whitbeck J, de Amorim MD, Conan V, Guillaume JL (2012) Temporal reachability graphs. In: Özgür BA, Eylem E, Lili Q, Alex CS (eds) The 18th annual international conference on mobile computing and networking, Mobicom’12, ACM, Istanbul, Turkey, Aug 22–26, 2012, pp 377–388

  • Wilmet A, Viard T, Latapy M, Lamarche-PR (2018) Degree-based outliers detection within ip traffic modelled as a link stream. In: Proceedings of the 2nd network traffic measurement and analysis conference (TMA)

  • Xu KS, Hero AO (2013) Dynamic stochastic blockmodels: statistical models for time-evolving networks. Springer, Berlin, Heidelberg, pp 201–210

    Google Scholar 

  • Zhao K, Karsai M, Bianconi G (2013) Models, entropy and information of temporal social networks. Springer, Berlin, Heidelberg, pp 95–117

    Book  Google Scholar 

  • Zignani M, Gaito S, Rossi GP, Zhao X, Zheng H, Zhao BY (2014) Link and triadic closure delay: temporal metrics for social network dynamics. In Eytan A, Paul R, Munmun De C, Bernie H, Alice HH (eds) Proceedings of the eighth international conference on weblogs and social media, ICWSM 2014, The AAAI Press, Ann Arbor, Michigan, USA, June 1–4, 2014

Download references

Acknowledgements

This work is funded in part by the European Commission H2020 FETPROACT 2016-2017 program under Grant 732942 (ODYCCEUS), by the ANR (French National Agency of Research) under Grants ANR-15-CE38-0001 (AlgoDiv) and ANR-13-CORD-0017-01 (CODDDE), by the French program “PIA - Usages, services et contenus innovants” under Grant O18062-44430 (REQUEST), and by the Ile-de-France program FUI21 under Grant 16010629 (iTRAC). We warmly thank the many colleagues and friends who read preliminary versions of this work and provided invaluable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Latapy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latapy, M., Viard, T. & Magnien, C. Stream graphs and link streams for the modeling of interactions over time. Soc. Netw. Anal. Min. 8, 61 (2018). https://doi.org/10.1007/s13278-018-0537-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13278-018-0537-7

Keywords

Navigation