Skip to main content
Log in

Identifying central nodes for information flow in social networks using compressive sensing

  • Original Article
  • Published:
Social Network Analysis and Mining Aims and scope Submit manuscript

Abstract

This paper addresses the problem of identifying central nodes from the information flow standpoint in a social network. Betweenness centrality is the most prominent measure that shows the node importance from the information flow standpoint in the network. High betweenness centrality nodes play crucial roles in the spread of propaganda, ideologies, or gossips in social networks, the bottlenecks in communication networks, and the connector hubs in biological systems. In this paper, we introduce DICeNod, a new approach to efficiently identify central nodes in social networks without direct measurement of each individual node using compressive sensing, which is a well-known paradigm in sparse signal recovery. DICeNod can perform in a distributed manner by utilizing only local information at each node; thus, it is appropriate for large real-world and unknown networks. We theoretically show that by using only \(O \big ( k \log (\frac{n}{k}) \big )\) indirect end-to-end measurements in DICeNod, one can recover top-k central nodes in a network with n nodes, even though the measurements have to follow network topological constraints. Furthermore, we show that the computationally efficient \(\ell _1\)-minimization can provide recovery guarantees to infer such central nodes from the constructed measurement matrix with this number of measurements. Finally, we evaluate accuracy, speedup, and effectiveness of the proposed method by extensive simulations on several synthetic and real-world networks. The experimental results demonstrate that the number of correctly identified central nodes and their estimated rank based on the DICeNod framework and the global betweenness centrality correlate very well. Moreover, the results show that DICeNod is a scalable framework and it can be efficiently used for identifying central nodes in real-world networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Article  MathSciNet  MATH  Google Scholar 

  • Alexa traffic statistics for Facebook (2016). http://www.alexa.com/siteinfo/facebook.com

  • Avrachenkov K, Litvak N, Nemirovsky D, Smirnova E, Sokol M (2010) Monte carlo methods for top-k personalized pagerank lists and name disambiguation. INRIA, Tech Report RR-7367 1

  • Avrachenkov K, Litvak N, Sokol M, Towsley D (2014) Quick detection of nodes with large degrees. Internet Math 10:1–19

    Article  MathSciNet  MATH  Google Scholar 

  • Babarczi P, Tapolcai J, Ho PH (2011) Adjacent link failure localization with monitoring trails in all-optical mesh networks. IEEE/ACM Trans Netw 19(3):907–920

    Article  Google Scholar 

  • Bader D, Madduri K (2006) Parallel algorithms for evaluating centrality indices in real-world networks. In: International conference on parallel processing (ICPP), pp 539–550

  • Bae J, Kim S (2014) Identifying and ranking influential spreaders in complex networks by neighborhood coreness. Phys A 395:549–559

    Article  MathSciNet  MATH  Google Scholar 

  • Barabasi AL, Albert R (1999) Emregence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  MATH  Google Scholar 

  • Benesty J, Chen J, Huang Y, Cohen I (2009) Pearson correlation coefficient. In: Noise reduction in speech processing. Springer Topics in Signal Processing, vol 2. Springer, pp 1–4. https://doi.org/10.1007/978-3-642-00296-0_5

  • Bergamini E, Meyerhenke H (2016) Approximating betweenness centrality in fully dynamic networks. Internet Math 12(5):281–314

    Article  MathSciNet  MATH  Google Scholar 

  • Bergamini E, Borassi M, Crescenzi P, Marino A, Meyerhenke H (2016) Computing top-k closeness centrality faster in unweighted graphs. In: The eighteenth workshop on algorithm engineering and experiments (ALENEX), society for industrial and applied mathematics, vol 1, pp 68–80

  • Berinde R, Gilbert A, Indyk P, Karloff H, Strauss M (2008) Combining geometry and combinatorics: a unified approach to sparse signal recovery. In: 46th annual Allerton conference on communication, control, and computing, pp 798–805

  • Bonacich P (1987) Power and centrality: a family of measures. Am J Sociol 92:1170–1182

    Article  Google Scholar 

  • Bonchi F, De Francisci Morales G, Riondato M (2016) Centrality measures on big graphs: exact, approximated, and distributed algorithms. In: International conference companion on world wide web (WWW), pp 1017–1020

  • Borassi M, Crescenzi P, Marino A (2015) Fast and simple computation of top-k closeness centralities. arXiv:1507.01490v1

  • Borgatti SP (2006) Identifying sets of key players in a social network. Comput Math Organ Theory 12:21–34

    Article  MATH  Google Scholar 

  • Borge-Holthoefer J, Moreno Y (2012) Absence of influential spreaders in rumor dynamics. Phys. Rev. E 85:026116

    Article  Google Scholar 

  • Brandes U (2001) A faster algorithm for betweenness centrality. J Math Sociol 25:163–177

    Article  MATH  Google Scholar 

  • Brandes U, Pich C (2007) Centrality estimation in large networks. Int J Bifurc Chaos 17:2303–2318

    Article  MathSciNet  MATH  Google Scholar 

  • Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst 30:107–117

    Article  Google Scholar 

  • Buhrman H, Miltersen PB, Radhakrishnan J, Venkatesh S (2002) Are bitvectors optimal? SIAM J Comput 31:1723–1744

    Article  MathSciNet  MATH  Google Scholar 

  • Candes EJ, Tao T (2005) Decoding by linear programming. IEEE Trans Inf Theory 51(12):4203–4215

    Article  MathSciNet  MATH  Google Scholar 

  • Candes EJ, Romberg JK, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math 59(8):1207–1223

    Article  MathSciNet  MATH  Google Scholar 

  • Chen SS, Donoho DL, Saunders MA (2001) Atomic decomposition by basis pursuit. SIAM Rev 43(1):129–159

    Article  MathSciNet  MATH  Google Scholar 

  • Cheraghchi M, Karbasi A, Mohajer S, Saligrama V (2012) Graph constrained group testing. IEEE Trans Inf Theory 58(1):248–262

    Article  MathSciNet  MATH  Google Scholar 

  • Costa LDF, Rodrigues FA, Travieso G, Villas-Boas PR (2007) Characterization of complex networks: a survey of measurements. Adv Phys 56:167–242

    Article  Google Scholar 

  • Davenport M, Duarte M, Eldar Y, Kutyniok G (2012) Introduction to compressed sensing, chapter in compressed sensing: theory and applications, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Donoho D (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  • Dorogovtsev S, Mendes JFF (2002) Evolution of networks. Adv Phys 51:1079–1187

    Article  Google Scholar 

  • Erdos P, Renyi A (1959) On random graphs. Publ Math (Debrecen) 6:290–297

    MathSciNet  MATH  Google Scholar 

  • Everett M, Borgatti SP (2005) Ego network betweenness. Soc Netw 27(1):31–38

    Article  Google Scholar 

  • Facebook advertising (2017). http://www.facebook.com/advertising

  • Facebook Connections Limit. https://www.facebook.com/help/community/question/?id=492434414172691

  • Facebook Climbs To 1.59 Billion Users And Crushes Q4 Estimates With 5.8B Revenue (2016). http://techcrunch.com/2016/01/27/facebook-earnings-q4-2015

  • Freeman L (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41

    Article  Google Scholar 

  • Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1:215–239

    Article  Google Scholar 

  • Geere D (2010) Samsung offers free phones to frustrated iPhone users. http://www.cnn.com/2010/TECH/mobile/07/24/samsung. replacing.iphones, CNN Tech

  • Gephi platform for interactive visualization and exploration of graphs. http://rankinfo.pkqs.net/twittercrawl.dot.gz (2017)

  • Ghalebi E, Mahyar H, Grosu R, Rabiee HR (2017) Compressive sampling for sparse recovery in networks. In: Proc of the 23rd ACM SIGKDD conference on knowledge discovery and data mining (KDD), 13th international workshop on mining and learning with graphs, Halifax, Nova Scotia, Canada, pp 1–8

  • Goldenberg J, Han S, Lehmann DR, Hong JW (2009) The role of hubs in the adoption process. J Mark 73(2):1–13

    Article  Google Scholar 

  • Hamed I, Charrad M (2015) Recognizing information spreaders in terrorist networks: 26/11 attack case study. Lect Notes Bus Inf Process 233:1–12

    Google Scholar 

  • Harvey N, Patrascu M, Wen Y, Yekhanin S, Chan V (2007) Nonadaptive fault diagnosis for all-optical networks via combinatorial group testing on graphs. In: IEEE INFOCOM, pp 697–705

  • Huang X, Vodenska I, Wang F, Havlin S, Stanley HE (2011) Identifying influential directors in the united states corporate governance network. Phys Rev E 84:046101

    Article  Google Scholar 

  • Ilyas MU, Shafiq MZ, Liu AX, Radha H (2013) A distributed algorithm for identifying information hubs in social networks. IEEE J Sel Areas Commun 31(9):629–640

    Article  Google Scholar 

  • Ji S, Yan Z (2017) Refining approximating betweenness centrality based on samplings, pp 1–13. arXiv:1608.04472v5

  • Kermarrec AM, Merrer EL, Sericola B, Tredan G (2011) Second order centrality: distributed assessment of nodes criticity in complex networks. Comput Commun 34:619–628

    Article  Google Scholar 

  • Keyou Y, Roberto T, Li Q (2015) Distributed algorithms for computation of centrality measures in complex networks. arXiv:1507.01694v1

  • Kim H, Yoneki E (2012) Influential neighbours selection for information diffusion in online social networks. In: International conference on computer communications and networks (ICCCN)

  • Kourtellis N, Alahakoon T, Simha R, Iamnitchi A, Tripathi R (2013) Identifying high betweenness centrality nodes in large social networks. Soc Netw Anal Min 3:899–914

    Article  Google Scholar 

  • Kyrillidis A, Cevher V (2012) Combinatorial selection and least absolute shrinkage via the clash algorithm. In: 2012 IEEE international symposium on information theory proceedings (ISIT). IEEE, pp 2216–2220

  • Lee M, Choi S, Chung C (2016) Efficient algorithms for updating betweenness centrality in fully dynamic graphs. Inf Sci 326:278–296

    Article  MathSciNet  MATH  Google Scholar 

  • Lehmann K, Kaufmann M (2003) Decentralized algorithms for evaluating centrality in complex networks, vol 1. Wilhelm Schickard Institute, Technical report

  • Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: Densification and shrinking diameters. ACM Trans Knowl Discov Data 1(1):2

    Article  Google Scholar 

  • Leskovec J, Huttenlocher D, Kleinberg J (2010) Predicting positive and negative links in online social networks. In: WWW

  • Lim Y, Menasche DS, Ribeiro B, Towsley D, Basu P (2011) Online estimating the k central nodes of a network. In: IEEE network science workshop, pp 118–122

  • Liu JG, Ren ZM, Guo Q (2013) Ranking the spreading influence in complex networks. Phys A 392:4154–4159

    Article  Google Scholar 

  • Lu L, Zhou T, Zhang QM, Stanley H (2016) The h-index of a network node and its relation to degree and coreness. Nature Commun 7:10,168

    Article  Google Scholar 

  • Mahyar H (2015) Detection of top-k central nodes in social networks: a compressive sensing approach. In: IEEE/ACM international conference on advances in social networks analysis and mining, ASONAM 2015, Paris, France, pp 902–909

  • Mahyar H, Rabiee HR, Hashemifar ZS (2013a) UCS-NT: an unbiased compressive sensing framework for network tomography. In: IEEE international conference on acoustics, speech, and signal processing, ICASSP 2013, Vancouver, Canada, pp 4534–4538

  • Mahyar H, Rabiee HR, Hashemifar ZS, Siyari P (2013b) UCS-WN: an unbiased compressive sensing framework for weighted networks. In: Conference on information sciences and systems, CISS 2013, Baltimore, USA, pp 1–6

  • Mahyar H, Rabiee HR, Movaghar A, Ghalebi E, Nazemian A (2015a) CS-ComDet: a compressive sensing approach for inter-community detection in social networks. In: IEEE/ACM international conference on advances in social networks analysis and mining, ASONAM 2015, Paris, France, pp 89–96

  • Mahyar H, Rabiee HR, Movaghar A, Hasheminezhad R, Ghalebi E, Nazemian A (2015b) A low-cost sparse recovery framework for weighted networks under compressive sensing. In: IEEE international conference on social computing and networking, SocialCom 2015, Chengdu, China, pp 183–190

  • Mahyar H, Ghalebi E, Rabiee HR, Grosu R (2017) The bottlenecks in biological networks. In: Proc of the 34th international conference on machine learning (ICML), Computational Biology Workshop, Sydney, Australia, pp 1–5

  • Mahyar H, Hasheminezhad R, Ghalebi EK, Nazemian A, Grosu R, Movaghar A, Rabiee HR (2018) Compressive sensing of high betweenness centrality nodes in networks. Phys A 497:166–184

    Article  MathSciNet  Google Scholar 

  • Maiya AS, Berger-Wolf TY (2010) Online sampling of high centrality individuals in social networks. Adv Knowl Discov Data Min 6118:91–98

    Google Scholar 

  • Manuel N (2015) Samsung to give iPhone users a trial run with new Galaxy smartphones. http://www.cnet.com/news/samsung-to-give-iphone-users-a-trial-run-with-new-galaxy-smartphones, CNET Tech

  • Marsden PV (2002) Egocentric and sociocentric measures of network centrality. Soc Netw 24:407–422

    Article  Google Scholar 

  • Middya R, Chakravarty N, Naskar MK (2016) Compressive sensing in wireless sensor networks: a survey. In: IETE technical review

  • Mitzenmacher M, Upfal E (2005) Probability and computing: randomized algorithms and probabilistic analysis, vol 1. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  • Motter AE, Lai YC (2002) Cascade-based attacks on complex networks. Phys Rev E 6:065102

    Google Scholar 

  • Nanda S, Kotz D (2008) Localized bridging centrality for distributed network analysis. In: International conference on computer communications and networks (ICCCN), pp 1–6

  • Needell D, Tropp JA (2009) CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Anal 26(3):301–321

    Article  MathSciNet  MATH  Google Scholar 

  • Newman S (2010) Networks: an introduction, vol 1. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  • Okamoto K, Chen W, Li XY (2008) Ranking of closeness centrality for large-scale social networks. Front Algorithmics 5059:186–195

    Article  MATH  Google Scholar 

  • Opsahl T, Panzarasa P (2009) Clustering in weighted networks. Soc Netw 31(2):155–163

    Article  Google Scholar 

  • Patwari N, Ash JN, Kyperountas S, Hero AO, Moses RL, Correal NS (2005) Locating the nodes: cooperative localization in wireless sensor networks. Sig Process Mag IEEE 22:54–69

    Article  Google Scholar 

  • Python-iGraph: The open source network analysis package in python (2017). URL http://igraph.org/python/

  • Riondato M, Kornaropoulos EM (2016) Fast approximation of betweenness centrality through sampling. Data Min Knowl Discov 30:438–475

    Article  MathSciNet  Google Scholar 

  • Sabidussi G (1966) The centrality index of a graph. Psychometrika 31:581–603

    Article  MathSciNet  MATH  Google Scholar 

  • Santoro N (2006) Design and analysis of distributed algorithms, vol 56. Wiley, New York

    Book  MATH  Google Scholar 

  • Singh B, Gupte N (2005) Congestion and decongestion in a communication network. Phys Rev E 71(5):055,103

    Article  Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    Article  MATH  Google Scholar 

  • Suri NR, Narahari Y (2008) Determining the top-k nodes in social networks using the shapley value. In: International joint conference on autonomous agents and multiagent systems, vol 3, pp 1509–1512

  • Taheri SM, Mahyar H, Firouzi M, Ghalebi K, E, Grosu R, Movaghar A (2017) Extracting implicit social relation for social recommendation techniques in user rating prediction. In: Social computing workshop: spatial social behavior analytics on the web at 26th international world wide web conference (WWW), pp 1343–1351

  • Taheri SM, Mahyar H, Firouzi M, Ghalebi KE, Grosu R, Movaghar A (2017) HellRank: a Hellinger-based centrality measure for bipartite social networks. Soc Netw Anal Min (SNAM) 7:22

    Article  Google Scholar 

  • Twitter Connections Limit. https://support.twitter.com/articles/66885 (2017)

  • Vapnik VN, Chervonenkis AY (2015) On the uniform convergence of relative frequencies of events to their probabilities. In: Vovk V, Papadopoulos H, Gammerman A (eds) Measures of complexity. Springer, Cham, pp 11–30. https://doi.org/10.1007/978-3-319-21852-6_3

  • Wang M, Xu W, Mallada E, Tang A (2012) Sparse recovery with graph constraints: fundamental limits and measurement construction. In: IEEE INFOCOM, pp 1871–1879

  • Wehmuth K, Gomes ATA, Ziviani A (2014) DANCE: a framework for the distributed assessment of network centralities. arXiv:1108.1067v2

  • Xu S, Wang P (2017) Identifying important nodes by adaptive leaderrank. Phys A 469:654–664

    Article  Google Scholar 

  • Xu W, Mallada E, Tang A (2011) Compressive sensing over graphs. In: IEEE INFOCOM, pp 2087–2095

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid R. Rabiee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahyar, H., Hasheminezhad, R., Ghalebi, E. et al. Identifying central nodes for information flow in social networks using compressive sensing. Soc. Netw. Anal. Min. 8, 33 (2018). https://doi.org/10.1007/s13278-018-0506-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13278-018-0506-1

Keywords

Navigation