Skip to main content

Advertisement

Log in

An indispensable role of CPT-1a to survive cancer cells during energy stress through rewiring cancer metabolism

  • Original Article
  • Published:
Tumor Biology

Abstract

Unlike normal cells, cancer cells are recently identified to rely on aerobic glycolysis for energy production called the Warburg effect. Several attempts are being made to target this metabolic reprogramming pathway in treating cancers; however, the successful rate is very limited. In this study, we investigated the functional roles of fatty acid oxidation key enzyme carnitine palmitoyl transferase 1a (CPT-1a), during the metabolic programming of pancreatic ductal adenocarcinoma (PDAC) cells induced by glucose deprivation. Knockdown of CPT-1a decreased the intracellular nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH) generation, increased reactive oxygen species (ROS) production, and induced sensitivity to glucose deprivation, whereas upregulation of CPT-1a increased the intracellular ATP required for cell survival. Further investigation showed that CPT-1a inhibitor etomoxir (ETO) can restore the sensitivity of PDAC cells to gemcitabine and regress xenograft tumors in vivo. Finally, overexpression of CPT-1a expression is associated with chemoresistance in tumor specimens. Our data suggest that CPT-1a plays a key role in reprogramming cancer metabolism to escape from energy stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11:85–95.

    Article  CAS  PubMed  Google Scholar 

  2. Jones RG, Thompson CB. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 2009;23:537–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Romero-Garcia S, Lopez-Gonzalez JS, Baez-Viveros JL, Aguilar-Cazares D, Prado-Garcia H. Tumor cell metabolism: an integral view. Cancer Biology & Therapy. 2011;12:939–48.

    Article  CAS  Google Scholar 

  4. Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer. 2013;13:227–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dell’ Antone P. Energy metabolism in cancer cells: how to explain the Warburg and Crabtree effects? Med Hypotheses. 2012;79:388–92.

    Article  PubMed  Google Scholar 

  6. Wang Y, Nie F, Ouyang J, Wang X, Ma X. Inhibitory effects of sea buckthorn procyanidins on fatty acid synthase and MDA-MB-231 cells. Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine. 2014;35:9563–9.

    Article  CAS  Google Scholar 

  7. Jeon SM, Chandel NS, Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature. 2012;485:661–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu WJ, Chen LG, Chen X, Liu YS, Zheng TH, Song JJ, Xu W, Li P, Zhang MQ, Xiao CX, Guleng B, Ren JL. Silencing ECHS1 attenuates the proliferation and induces the autophagy of hepatocellular carcinoma via impairing cell metabolism and activating AMPK. Neoplasma. 2015;62:872–80.

    Article  CAS  PubMed  Google Scholar 

  9. Li X, Lu Y, Lu H, Luo J, Hong Y, Fan Z. AMPK-mediated energy homeostasis and associated metabolic effects on cancer cell response and resistance to cetuximab. Oncotarget. 2015;6:11507–18.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sadeghi RN, Karami-Tehrani F, Salami S. Targeting prostate cancer cell metabolism: impact of hexokinase and CPT-1 enzymes. Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine. 2015;36:2893–905.

    Article  CAS  Google Scholar 

  11. Flaveny CA, Griffett K, El-Gendy Bel D, Kazantzis M, Sengupta M, Amelio AL, Chatterjee A, Walker J, Solt LA, Kamenecka TM, Burris TP. Broad anti-tumor activity of a small molecule that selectively targets the Warburg effect and lipogenesis. Cancer Cell. 2015;28:42–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pucci S, Zonetti MJ, Fisco T, Polidoro C, Bocchinfuso G, Palleschi A, Novelli G, Spagnoli LG, Mazzarelli P. Carnitine palmitoyl transferase-1a (CPT1A): a new tumor specific target in human breast cancer. Oncotarget. 2016.

  13. Lee EA, Angka L, Rota SG, Hanlon T, Mitchell A, Hurren R, Wang XM, Gronda M, Boyaci E, Bojko B, Minden M, Sriskanthadevan S, Datti A, Wrana JL, Edginton A, Pawliszyn J, Joseph JW, Quadrilatero J, Schimmer AD, Spagnuolo PA. Targeting mitochondria with avocatin B induces selective leukemia cell death. Cancer Res. 2015;75:2478–88.

    Article  CAS  PubMed  Google Scholar 

  14. Linher-Melville K, Zantinge S, Sanli T, Gerstein H, Tsakiridis T, Singh G. Establishing a relationship between prolactin and altered fatty acid beta-oxidation via carnitine palmitoyl transferase 1 in breast cancer cells. BMC Cancer. 2011;11:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Perera RM, Stoykova S, Nicolay BN, Ross KN, Fitamant J, Boukhali M, Lengrand J, Deshpande V, Selig MK, Ferrone CR, Settleman J, Stephanopoulos G, Dyson NJ, Zoncu R, Ramaswamy S, Haas W, Bardeesy N. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature. 2015;524:361–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Scott JW, Galic S, Graham KL, Foitzik R, Ling NX, Dite TA, Issa SM, Langendorf CG, Weng QP, Thomas HE, Kay TW, Birnberg NC, Steinberg GR, Kemp BE, Oakhill JS. Inhibition of AMP-activated protein kinase at the allosteric drug-binding site promotes islet insulin release. Chemistry & Biology. 2015;22:705–11.

    Article  CAS  Google Scholar 

  17. Soreide K, Sund M. Epidemiological-molecular evidence of metabolic reprogramming on proliferation, autophagy and cell signaling in pancreas cancer. Cancer Lett. 2015;356:281–8.

    Article  PubMed  Google Scholar 

  18. Fritz V, Benfodda Z, Henriquet C, Hure S, Cristol JP, Michel F, Carbonneau MA, Casas F, Fajas L. Metabolic intervention on lipid synthesis converging pathways abrogates prostate cancer growth. Oncogene. 2013;32:5101–10.

    Article  CAS  PubMed  Google Scholar 

  19. Klingemann H. Challenges of cancer therapy with natural killer cells. Cytotherapy. 2015;17:245–9.

    Article  CAS  PubMed  Google Scholar 

  20. Poonacha TK, Go RS. Level of scientific evidence underlying recommendations arising from the national comprehensive cancer network clinical practice guidelines. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29:186–91.

    Article  Google Scholar 

  21. Rejiba S, Bigand C, Parmentier C, Hajri A. Gemcitabine-based chemogene therapy for pancreatic cancer using Ad-dCK::UMK GDEPT and TS/RR siRNA strategies. Neoplasia. 2009;11:637–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Loubiere C, Goiran T, Laurent K, Djabari Z, Tanti JF, Bost F. Metformin-induced energy deficiency leads to the inhibition of lipogenesis in prostate cancer cells. Oncotarget. 2015;6:15652–61.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hu J, Che L, Li L, Pilo MG, Cigliano A, Ribback S, Li X, Latte G, Mela M, Evert M, Dombrowski F, Zheng G, Chen X, Calvisi DF. Co-activation of AKT and c-MET triggers rapid hepatocellular carcinoma development via the mTORC1/FASN pathway in mice. Scientific Reports. 2016;6:20484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li P, Tian W, Ma X. Alpha-mangostin inhibits intracellular fatty acid synthase and induces apoptosis in breast cancer cells. Mol Cancer. 2014;13:138.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Guo S, Wang Y, Zhou D, Li Z. Significantly increased monounsaturated lipids relative to polyunsaturated lipids in six types of cancer microenvironment are observed by mass spectrometry imaging. Scientific Reports. 2014;4:5959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li J, Ren S, Piao HL, Wang F, Yin P, Xu C, Lu X, Ye G, Shao Y, Yan M, Zhao X, Sun Y, Xu G. Integration of lipidomics and transcriptomics unravels aberrant lipid metabolism and defines cholesteryl oleate as potential biomarker of prostate cancer. Scientific Reports. 2016;6:20984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Ethics declarations

Funding

This study was supported by the grant from the National Natural Science Foundation of China (No. 81401412).

Conflicts of interest

None

Ethical approval

All the subjects signed informed consent documents. The protocol for this study was in accordance with the Declaration of Helsinki and its subsequent revisions, and it was approved by the Institutional Review Boards of the Tianjin Medical University Cancer Institute & Hospital.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Hong, Y., Tao, X. et al. An indispensable role of CPT-1a to survive cancer cells during energy stress through rewiring cancer metabolism. Tumor Biol. 37, 15795–15804 (2016). https://doi.org/10.1007/s13277-016-5382-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5382-6

Keywords

Navigation