Skip to main content

Advertisement

Log in

Global methylation profiling to identify epigenetic signature of gallbladder cancer and gallstone disease

  • Original Article
  • Published:
Tumor Biology

Abstract

Promoter methylation in various tumor suppressor genes is reported to influence gallbladder carcinogenesis. Here, we aimed to identify methylation status in gallbladder cancer (GBC) by performing a comprehensive genome-wide DNA methylation profiling. The methylation status of 485,577 CpG sites were investigated using Illumina’s Infinium Human Methylation 450 BeadChip array in 24 tissues (eight each of tumor, adjacent non-tumor, and gallstone). About 33,443 differentially methylated sites (DMRs) were obtained in the whole human genome, of which 24,188 (72 %) were hypermethylated and 9255 (28 %) were hypomethylated. The data also revealed that majority of the DMRs are localized on the proximal promoter region [Transcription start sites (TSS200, TSS1500) and 5′ untranslated region (5′UTR)] and first exon. Exclusion of first exon detected a total of 10,123 (79 %) hypermethylated and 2703 (21 %) hypomethylated sites. Comparative analysis of the later with our differential proteomics data resulted in identification of 7 hypermethylated or down-regulated (e.g., FBN1, LPP, and SOD3) and 61 hypomethylated or up-regulated markers (e.g., HBE1, SNRPF, TPD52) for GBC. These genes could be further validated on the basis of their methylation/expression status in order to identify their utility to be used as biomarker/s for early diagnosis and management of GBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Randi G, Franceschi S, La Vecchia C. Gallbladder cancer worldwide: geographical distribution and risk factors. Int J Cancer. 2006;118:1591–602.

    Article  CAS  PubMed  Google Scholar 

  2. Medina E, Kaempffer AM. Cancer mortality in Chile: epidemiological considerations. Rev Med Chil. 2001;129:1195–202.

    Article  CAS  PubMed  Google Scholar 

  3. Lazcano-Ponce EC, Miquel JF, Muñoz N, Herrero R, Ferrecio C, Wistuba II, et al. Epidemiology and molecular pathology of gallbladder cancer. CA Cancer J Clin. 2001;51:349–64.

    Article  CAS  PubMed  Google Scholar 

  4. Roa I, Araya JC, Wistuba I, Villaseca M, de Aretxabala X, Burgos L. Gallbladder cancer in the IX Region of Chile. Impact of the anatomopathological study of 474 cases. Rev Med Chil. 1994;122:1248–56.

    CAS  PubMed  Google Scholar 

  5. Barbhuiya MA, Singh TD, Poojary SS, Gupta S, Kakkar M, Shrivastav BR, et al. Gallbladder cancer incidence in Gwalior district of India: five-year trend based on the registry of a regional cancer center. Indian J Cancer. 2015;52:430–7.

    Article  CAS  PubMed  Google Scholar 

  6. Dutta U, Nagi B, Garg PK, Sinha SK, Singh K, Tandon RK. Patients with gallstones develop gallbladder cancer at an earlier age. Eur J Cancer Prev. 2005;14:381–5.

    Article  CAS  PubMed  Google Scholar 

  7. Diehl A. Gallstone size and the risk of gallbladder cancer. JAMA. 1983;250:2323–6.

    Article  CAS  PubMed  Google Scholar 

  8. Stinton LM, Myers RP, Shaffer EA. Epidemiology of gallstones. Gastroenterol Clin N Am. 2010;39:157–69.

    Article  Google Scholar 

  9. Csendes A, Becerra M, Rojas J, Medina E. Number and size of stones in patients with asymptomatic and symptomatic gallstones and gallbladder carcinoma: a prospective study of 592 cases. J Gastrointest Surg. 2000;4:481–5.

    Article  CAS  PubMed  Google Scholar 

  10. Mlinarić-Vrbica S, Vrbica Z. Correlation between cholelithiasis and gallbladder carcinoma in surgical and autopsy specimens. Coll Antropol. 2009;33:533–7.

    PubMed  Google Scholar 

  11. Le MD, Henson D, Young H, Albores-Saavedra J. Is gallbladder cancer decreasing in view of increasing laparoscopic cholecystectomy? Ann Hepatol. 2011;10:306–14.

    PubMed  Google Scholar 

  12. Jung KW, Park S, Kong HJ, Won YJ, Lee JY, Seo HG, et al. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2009. Cancer Res Treatment. 2012;44:11–24.

    Article  Google Scholar 

  13. Randi G, Malvezzi M, Levi F, Ferlay J, Negri E, Franceschi S, et al. Epidemiology of biliary tract cancers: an update. Ann Oncol. 2009;20:146–59.

    Article  CAS  PubMed  Google Scholar 

  14. Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol. 2011;6:479–507.

    Article  CAS  PubMed  Google Scholar 

  15. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell. 2010;19:698–711.

    Article  CAS  PubMed  Google Scholar 

  17. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, et al. High density DNA methylation array with single CpG site resolution. Genomics. 2011;98:288–95.

    Article  CAS  PubMed  Google Scholar 

  18. Dedeurwaerder S, Defrance M, Calonne E, Denis H, Sotiriou C, Fuks F. Evaluation of the Infinium Methylation 450K technology. Epigenomics. 2011;3:771–84.

    Article  CAS  PubMed  Google Scholar 

  19. Bibikova M, Le J, Barnes B, Saedinia-Melnyk S, Zhou L, Shen R, et al. Genome-wide DNA methylation profiling using Infinium® assay. Epigenomics. 2009;1:177–200.

    Article  CAS  PubMed  Google Scholar 

  20. Marabita F, Almgren M, Lindholm ME, Ruhrmann S, Fagerström-Billai F, Jagodic M, et al. An evaluation of analysis pipelines for DNA methylation profiling using the Illumina HumanMethylation450 BeadChip platform. Epigenetics. 2013;8:333–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sahasrabuddhe NA, Barbhuiya MA, Bhunia S, Subbannayya T, Gowda H, Advani J, et al. Identification of prosaposin and transgelin as potential biomarkers for gallbladder cancer using quantitative proteomics. BBRC. 2014;446:863–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wilhelm-Benartzi CS, Koestler DC, Karagas MR, Flanagan JM, Christensen BC, Kelsey KT, et al. Review of processing and analysis methods for DNA methylation array data. Br J Cancer. 2013;109:1394–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, et al. Dynamic changes in the human methylome during differentiation. Genome Res. 2010;20:320–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li Y, Zhu J, Tian G, Li N, Li Q, Ye M, et al. The DNA methylome of human peripheral blood mononuclear cells. PLoS Biol. 2010;8:1–9.

    Article  CAS  Google Scholar 

  25. Lister R, Ecker JR. Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res. 2009;19:959–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Milutin Gašperov N, Farkas SA, Nilsson TK, Grce M. Epigenetic activation of immune genes in cervical cancer. Immunol Letters. 2014;162:256–7.

    Article  Google Scholar 

  27. Reinert T, Modin C, Castano FM, Lamy P, Wojdacz TK, Hansen LL, et al. Comprehensive genome methylation analysis in bladder cancer: identification and validation of novel methylated genes and application of these as urinary tumor markers. Clin Can Res. 2011;17:5582–92.

    Article  CAS  Google Scholar 

  28. Cheng YI, Yan Z, Liu Y, Liang C, Xia H, Feng J, et al. Analysis of DNA methylation patterns associated with the gastric cancer genome. Oncol Lett. 2014;7:1021–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Naumov VA, Generozov EV, Zaharjevskaya NB, Matushkina DS, Larin AK, Chernyshov SV, et al. Genome-scale analysis of DNA methylation in colorectal cancer using Infinium HumanMethylation450 BeadChips. Epigenetics. 2013;8:921–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li X, Zhou F, Jiang C, Wang Y, Lu Y, Yang F, et al. Identification of a DNA methylome profile of esophageal squamous cell carcinoma and potential plasma epigenetic biomarkers for early diagnosis. PLoS One. 2014;9:1–12.

    Google Scholar 

  31. Dedeurwaerder S, Defrance M, Bizet M, Calonne E, Bontempi G, Fuks F. A comprehensive overview of Infinium HumanMethylation450 data processing. Brief Bioinform. 2014;15:929–41.

    Article  PubMed  Google Scholar 

  32. Price ME, Cotton AM, Lam LL, Farré P, Emberly E, Brown CJ, et al. Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array. Epigenet Chromatin. 2013;6:1–2.

    Article  Google Scholar 

  33. Fraser HB, Lam LL, Neumann SM, Kobor MS. Population-specificity of human DNA methylation. Genome Biol. 2012;13:R8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Simmer F, Brinkman AB, Assenov Y, Matarese F, Kaan A, Sabatino L, et al. Comparative genome-wide DNA methylation analysis of colorectal tumor and matched normal tissues. Epigenetics. 2012;7:1355–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hinoue T, Weisenberger DJ, Lange C, Shen H, Byun HM, Van Den Berg, et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res. 2012;22:271–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND, et al. DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS One. 2016;6:1–12.

    Google Scholar 

  37. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, Esteller M. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics. 2011;6:692–702.

    Article  CAS  PubMed  Google Scholar 

  38. Guo Q, Song Y, Zhang H, Wu X, Xia P, Dang C. Detection of hypermethylated fibrillin-1 in the stool samples of colorectal cancer patients. Med Oncol. 2013;30:695.

    Article  PubMed  Google Scholar 

  39. Kuriyama S, Yoshida M, Yano S, Aiba N, Kohno T, Minamiya Y, et al. LPP inhibits collective cell migration during lung cancer dissemination. Oncogene. 2016;35:952–64.

    Article  CAS  PubMed  Google Scholar 

  40. Kim J, Mizokami A, Shin M, Izumi K, Konaka H, Kadono Y, et al. SOD3 acts as a tumor suppressor in PC-3 prostate cancer cells via hydrogen peroxide accumulation. Anticancer Res. 2014;34:2821–31.

    CAS  PubMed  Google Scholar 

  41. Human Protein Atlas. http://www.proteinatlas.org/ENSG00000213931-HBE1/cancer.

  42. Lee SH, Appleby V, Jeyapalan JN, Palmer RD, Nicholson JC, Sottile V, et al. Variable methylation of the imprinted gene, SNRPN, supports a relationship between intracranial germ cell tumours and neural stem cells. J Neuro oncol. 2011;101:419–28.

    Article  CAS  Google Scholar 

  43. Byrne JA, Frost S, Chen Y, Bright RK. Tumor protein D52 (TPD52) and cancer-oncogene understudy or understudied oncogene? Tumor Biol. 2014;35:7369–82.

    Article  CAS  Google Scholar 

  44. Singh TD, Poojary S, Bhunia S, Barbhuiya MA, Gupta S, Shrivastav BR, et al. Epigenetic regulation of APC in the molecular pathogenesis of gallbladder cancer. Indian J Med Res. 2016 (in press).

  45. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–50.

    Article  CAS  PubMed  Google Scholar 

  46. Alonso L, Fuchs E. Stem cells in the skin: waste not, Wnt not. Genes Dev. 2003;17:1189–200.

    Article  CAS  PubMed  Google Scholar 

  47. Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X, et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci. 2003;100:15853–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Barbhuiya MA, Sahasrabuddhe NA, Pinto SM, Muthusamy B, Singh TD, Nanjappa V, et al. Comprehensive proteomic analysis of human bile. Proteomics. 2011;11:4443–53.

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, et al. The Wnt/β-catenin pathway is required for the development of leukemia stem cells in AML. Science. 2010;327:1650–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. He W, Liu Q, Wang L, Chen W, Li N, Cao X. TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Mol Immunol. 2007;44:2850–9.

    Article  CAS  PubMed  Google Scholar 

  51. Kelly MG, Alvero AB, Chen R, Silasi DA, Abrahams VM, Chan S, et al. TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res. 2006;66:3859–68.

    Article  CAS  PubMed  Google Scholar 

  52. Möller C, Strömberg T, Juremalm M, Nilsson K, Nilsson G. Expression and function of chemokine receptors in human multiple myeloma. Leukemia. 2003;17:203–10.

    Article  PubMed  Google Scholar 

  53. Koshiba T, Hosotani R, Miyamoto Y, Ida J, Tsuji S, Nakajima S, et al. Expression of stromal cell-derived factor 1 and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumor progression. Clin Cancer Res. 2000;6:3530–5.

    CAS  PubMed  Google Scholar 

  54. Hwang JH, Hwang JH, Chung HK, Kim DW, Hwang ES, Suh JM, et al. CXC chemokine receptor 4 expression and function in human anaplastic thyroid cancer cells. J Clin Endocr Metab. 2003;88:408–16.

    Article  CAS  PubMed  Google Scholar 

  55. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10:9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Imanishi Y, Hu B, Jarzynka MJ, Guo P, Elishaev E, Bar-Joseph I. Angiopoietin-2 stimulates breast cancer metastasis through the α5β1 integrin-mediated pathway. Cancer Res. 2007;67:4254–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Aoudjit F, Vuori K. Integrin signaling inhibits paclitaxel-induced apoptosis in breast cancer cells. Oncogene. 2001;20:4995–5004.

    Article  CAS  PubMed  Google Scholar 

  58. Baril P, Gangeswaran R, Mahon PC, Caulee K, Kocher HM, Harada T. Periostin promotes invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: role of the β4 integrin and the PI3k pathway. Oncogene. 2007;26:2082–94.

    Article  CAS  PubMed  Google Scholar 

  59. Agrez MV, Bates RC. Colorectal cancer and the integrin family of cell adhesion receptors: current status and future directions. Eur J Cancer. 1994;30:2166–70.

    Article  Google Scholar 

  60. Kawashima K, Fujii T. The lymphocytic cholinergic system and its contribution to the regulation of immune activity. Life Sci. 2003;74:675–96.

    Article  CAS  PubMed  Google Scholar 

  61. Liebert M, Washington R, Stein J, Wedemeyer G, Grossman HB. Expression of the VLA beta 1 integrin family in bladder cancer. Am J Pathol. 1994;144:1016–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Brown JR, DuBois RN. COX-2: a molecular target for colorectal cancer prevention. J Clin Oncol. 2005;23:2840–55.

    Article  CAS  PubMed  Google Scholar 

  63. Even-Ram S, Uziely B, Cohen P, Grisaru-Granovsky S, Maoz M, Ginzburg Y. Thrombin receptor overexpression in malignant and physiological invasion processes. Nat Med. 1998;4:909–14.

    Article  CAS  PubMed  Google Scholar 

  64. Ondrey FG, Dong G, Sunwoo J, Chen Z, Wolf JS, Crowl-Bancroft CV. Constitutive activation of transcription factors NF-κB, AP-1, and NF-IL6 in human head and neck squamous cell carcinoma cell lines that express pro-inflammatory and pro-angiogenic cytokines. Mol Carcinogen. 1999;26:119–29.

    Article  CAS  Google Scholar 

  65. Mills GB, Moolenaar WH. The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer. 2003;3:582–91.

    Article  CAS  PubMed  Google Scholar 

  66. Szepeshazi K, Schally AV, Nagy A, Halmos G. Inhibition of growth of experimental human and hamster pancreatic cancers in vivo by a targeted cytotoxic bombesin analog. Pancreas. 2005;31:275–82.

    Article  CAS  PubMed  Google Scholar 

  67. Palmer JS, Duffy DL, Box NF, Aitken JF, O’Gorman LE, Green AC, et al. Melanocortin-1 receptor polymorphisms and risk of melanoma: is the association explained solely by pigmentation phenotype? Am J Hum Genet. 2000;66:176–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Department of Science and Technology, Government of India, New Delhi, India (DST No. SR/SO/HS/0161/2010). We are thankful to laboratory members, Sonam Shrivastava and Anshu Agarwal for their assistance in mining the gene details. The authors are also thankful to the patients and their family members for their active cooperation in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar Tiwari.

Ethics declarations

Conflicts of interest

None.

Additional information

Preeti Sharma, Shushruta Bhunia, and Satish S. Poojary contributed equally to this work.

Electronic supplementary material

Supplementary file 1

List of common genes in all data sets (XLSX 41 kb)

Supplementary file 2

List of genes based on pathway Ontology (XLSX 10 kb)

Supplementary file 3

(DOCX 11 kb)

Supplementary file 4

(DOCX 14 kb)

Supplementary file 5

List of unique 903 genes found only in tumor-with-stone samples (XLSX 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Bhunia, S., Poojary, S.S. et al. Global methylation profiling to identify epigenetic signature of gallbladder cancer and gallstone disease. Tumor Biol. 37, 14687–14699 (2016). https://doi.org/10.1007/s13277-016-5355-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5355-9

Keywords

Navigation