Skip to main content
Log in

Expression and significance of Hippo/YAP signaling in glioma progression

  • Original Article
  • Published:
Tumor Biology

Abstract

Dysregulation of Hippo/YAP signaling leads to aberrant cell growth and neoplasia. Although the roles and regulation of Hippo/YAP signaling were extensively studied in cancer biology recently, study systematically checking the expression pattern of core components of this pathway at the tumor tissue level remains lacking. In this study, we thoroughly examined the profile of core components of Hippo/YAP signaling in patient specimens both at the mRNA and at protein levels. We found that the mRNA level of YAP1/TAZ and their target genes, CRY61, CTGF, and BIRC5, was remarkably amplified in glioma tissues. Consistently, the protein level of YAP1/TAZ increased and meanwhile those of p-YAP1/p-TAZ and LATS1/2 decreased in gliomas. Unexpectedly, both the mRNA and protein levels of MST1/2 increased in the glioma tissues, inconsistent with its presumed tumor suppressor identity. In addition, over-expression of LATS2 decreased, while over-expression of YPA1 increased the cell proliferation ability. Furthermore, based on the data from the free public database, YAP1/TAZ and BIRC5 were positively associated with the prognosis of glioma patients, while LATS1/2 exhibited negative correlation with the glioma patient prognosis. Collectively, we deduce that, in glioma tissue context, MST1/2 may not be the essential component of the hippo/YAP pathway. Moreover, our findings uncover a new evidence supporting that YAP1/TAZ-BIRC5 might be abnormally activated due to LATS1/2 down-regulation, which in turn promote the occurrence and development of gliomas, paving the way to identify the potential therapeutic molecular target for gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359:492–507.

    Article  CAS  PubMed  Google Scholar 

  2. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P. The 2007 who classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin. 2010;60:166–93.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Meng Z, Moroishi T, Guan KL. Mechanisms of hippo pathway regulation. Genes Dev. 2016;30:1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Plouffe SW, Hong AW, Guan KL. Disease implications of the hippo/yap pathway. Trends Mol Med. 2015;21:212–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harvey KF, Zhang X, Thomas DM. The hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246–57.

    Article  CAS  PubMed  Google Scholar 

  7. Yu F-X, Zhao B, Guan K-L. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 2015;163:811–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li W, Cooper J, Zhou L, Yang C, Erdjument-Bromage H, Zagzag D, Snuderl M, Ladanyi M, Hanemann CO, Zhou P, Karajannis Matthias A, Giancotti Filippo G. Merlin/nf2 loss-driven tumorigenesis linked to crl4dcaf1-mediated inhibition of the hippo pathway kinases lats1 and 2 in the nucleus. Cancer Cell. 2014;26:48–60.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lau AN, Curtis SJ, Fillmore CM, Rowbotham SP, Mohseni M, Wagner DE, Beede AM, Montoro DT, Sinkevicius KW, Walton ZE, Barrios J, Weiss DJ, Camargo FD, Wong KK, Kim CF. Tumor-propagating cells and yap/taz activity contribute to lung tumor progression and metastasis. EMBO J. 2014;33:468–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Diep CH, Zucker KM, Hostetter G, Watanabe A, Hu C, Munoz RM, Von Hoff DD, Han H. Down-regulation of yes associated protein 1 expression reduces cell proliferation and clonogenicity of pancreatic cancer cells. PLoS One. 2012;7:e32783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Camargo FD, Gokhale S, Johnnidis JB, Fu D, Bell GW, Jaenisch R, Brummelkamp TR. Yap1 increases organ size and expands undifferentiated progenitor cells. Curr Biol: CB. 2007;17:2054–60.

    Article  CAS  PubMed  Google Scholar 

  12. Schulz A, Zoch A, Morrison H. A neuronal function of the tumor suppressor protein merlin. Acta Neuropathol Commun. 2014;2:82.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fernandez LA, Northcott PA, Dalton J, Fraga C, Ellison D, Angers S, Taylor MD, Kenney AM. Yap1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates sonic hedgehog-driven neural precursor proliferation. Genes Dev. 2009;23:2729–41.

    Article  Google Scholar 

  14. Takahashi Y, Miyoshi Y, Takahata C, Irahara N, Taguchi T, Tamaki Y, Noguchi S. Down-regulation of lats1 and lats2 mrna expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin Cancer Res: Off J Am Assoc Cancer Res. 2005;11:1380–5.

    Article  CAS  Google Scholar 

  15. Murakami H, Mizuno T, Taniguchi T, Fujii M, Ishiguro F, Fukui T, Akatsuka S, Horio Y, Hida T, Kondo Y, Toyokuni S, Osada H, Sekido Y. Lats2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res. 2011;71:873–83.

    Article  CAS  PubMed  Google Scholar 

  16. Liu YC, Wang YZ. Role of yes-associated protein 1 in gliomas: pathologic and therapeutic aspects. Tumour Biol: J Int Soc Oncodevelopmental Biol Med. 2015;36:2223–7.

    Article  CAS  Google Scholar 

  17. Orr BA, Bai H, Odia Y, Jain D, Anders RA, Eberhart CG. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth. J Neuropathol Exp Neurol. 2011;70:568–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu Y, Stamenkovic I, Yu Q. Cd44 attenuates activation of the hippo signaling pathway and is a prime therapeutic target for glioblastoma. Cancer Res. 2010;70:2455–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu G, Wang Y, Mijiti M, Wang Z, Wu PF, Jiafu D. Upregulation of mir-130b enhances stem cell-like phenotype in glioblastoma by inactivating the hippo signaling pathway. Biochem Biophys Res Commun. 2015;465:194–9.

    Article  CAS  PubMed  Google Scholar 

  20. Yuan J, Xiao G, Peng G, Liu D, Wang Z, Liao Y, Liu Q, Wu M, Yuan X. Mirna-125a-5p inhibits glioblastoma cell proliferation and promotes cell differentiation by targeting taz. Biochem Biophys Res Commun. 2015;457:171–6.

    Article  CAS  PubMed  Google Scholar 

  21. Ji T, Liu D, Shao W, Yang W, Wu H, Bian X. Decreased expression of lats1 is correlated with the progression and prognosis of glioma. J Exp Clin Cancer Res: CR. 2012;31:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chao Y, Wang Y, Liu X, Ma P, Shi Y, Gao J, Shi Q, Hu J, Yu R, Zhou X. Mst1 regulates glioma cell proliferation via the akt/mtor signaling pathway. J Neuro-Oncol. 2015;121:279–88.

    Article  CAS  Google Scholar 

  23. Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by lats and ck1 regulates yap stability through scf(beta-trcp). Genes Dev. 2010;24:72–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dai X, She P, Chi F, Feng Y, Liu H, Jin D, Zhao Y, Guo X, Jiang D, Guan KL, Zhong TP, Zhao B. Phosphorylation of angiomotin by lats1/2 kinases inhibits f-actin binding, cell migration, and angiogenesis. J Biol Chem. 2013;288:34041–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuser-Abali G, Alptekin A, Cinar B. Overexpression of myc and ezh2 cooperates to epigenetically silence mst1 expression. Epigenetics. 2014;9:634–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li P, Chen Y, Mak KK, Wong CK, Wang CC, Yuan P. Functional role of mst1/mst2 in embryonic stem cell differentiation. PLoS One. 2013;8:e79867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A, Daidone MG, Dupont S, Basso G, Bicciato S, Piccolo S. The hippo transducer taz confers cancer stem cell-related traits on breast cancer cells. Cell. 2011;147:759–72.

    Article  CAS  PubMed  Google Scholar 

  28. Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N, Dupont S, Piccolo S. A mechanical checkpoint controls multicellular growth through yap/taz regulation by actin-processing factors. Cell. 2013;154:1047–59.

    Article  CAS  PubMed  Google Scholar 

  29. Lassmann S, Schuster I, Walch A, Gobel H, Jutting U, Makowiec F, Hopt U, Werner M. Stat3 mrna and protein expression in colorectal cancer: effects on stat3-inducible targets linked to cell survival and proliferation. J Clin Pathol. 2007;60:173–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kamino M, Kishida M, Kibe T, Ikoma K, Iijima M, Hirano H, Tokudome M, Chen L, Koriyama C, Yamada K, Arita K, Kishida S. Wnt-5a signaling is correlated with infiltrative activity in human glioma by inducing cellular migration and mmp-2. Cancer Sci. 2011;102:540–8.

    Article  CAS  PubMed  Google Scholar 

  31. Sudol M, Harvey KF. Modularity in the hippo signaling pathway. Trends Biochem Sci. 2010;35:627–33.

    Article  CAS  PubMed  Google Scholar 

  32. Halder G, Johnson RL. Hippo signaling: growth control and beyond. Development. 2011;138:9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Baia GS, Caballero OL, Orr BA, Lal A, Ho JS, Cowdrey C, Tihan T, Mawrin C, Riggins GJ. Yes-associated protein 1 is activated and functions as an oncogene in meningiomas. Mol Cancer Res: MCR. 2012;10:904–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li P-D, Wang X-J, Shan Q, Wu Y-H, Wang Z. Evaluation of taz expression and its effect on tumor invasion and metastasis in human glioma. Asian Pac J Trop Med. 2014;7:757–60.

    Article  CAS  PubMed  Google Scholar 

  35. Ramos A, Camargo FD. The hippo signaling pathway and stem cell biology. Trends Cell Biol. 2012;22:339–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li H, Wolfe A, Septer S, Edwards G, Zhong X, Abdulkarim AB, Ranganathan S, Apte U. Deregulation of hippo kinase signalling in human hepatic malignancies. Liver Int: Off J Int Assoc Study Liver. 2012;32:38–47.

    Article  Google Scholar 

  37. Liang K, Zhou G, Zhang Q, Li J, Zhang C. Expression of hippo pathway in colorectal cancer. Saudi J Gastroenterol: Off J Saudi Gastroenterol Assoc. 2014;20:188–94.

    Article  Google Scholar 

  38. Tang F, Gill J, Ficht X, Barthlott T, Cornils H, Schmitz-Rohmer D, Hynx D, Zhou D, Zhang L, Xue G, Grzmil M, Yang Z, Hergovich A, Hollaender GA, Stein JV, Hemmings BA, Matthias P. The kinases ndr1/2 act downstream of the hippo homolog mst1 to mediate both egress of thymocytes from the thymus and lymphocyte motility. Sci Signal. 2015;8:ra100.

    Article  PubMed  Google Scholar 

  39. Lehtinen MK, Yuan Z, Boag PR, Yang Y, Villen J, Becker EB, DiBacco S, de la Iglesia N, Gygi S, Blackwell TK, Bonni A. A conserved mst-foxo signaling pathway mediates oxidative-stress responses and extends life span. Cell. 2006;125:987–1001.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao B, Li L, Wang L, Wang CY, Yu J, Guan KL. Cell detachment activates the hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 2012;26:54–68.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Meng Z, Moroishi T, Mottier-Pavie V, Plouffe SW, Hansen CG, Hong AW, Park HW, Mo JS, Lu W, Lu S, Flores F, Yu FX, Halder G, Guan KL. Map4k family kinases act in parallel to mst1/2 to activate lats1/2 in the hippo pathway. Nat Commun. 2015;6:8357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ganem NJ, Cornils H, Chiu SY, O’Rourke KP, Arnaud J, Yimlamai D, Thery M, Camargo FD, Pellman D. Cytokinesis failure triggers hippo tumor suppressor pathway activation. Cell. 2014;158:833–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research was supported by National Natural Science Foundation of China (No.81372699; No. 81472345), 333 talent project of Jiangsu Province (No. BRA2015394), and six major talent summit of Jiangsu Province (No. WSW-039). We thank Dr. B Zhao at Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University for Flag-LATS2 and Flag-YAP1 plasmids.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rutong Yu or Xiuping Zhou.

Ethics declarations

Conflicts of interest

None

Additional information

Hao Zhang and Decheng Geng are contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Geng, D., Gao, J. et al. Expression and significance of Hippo/YAP signaling in glioma progression. Tumor Biol. 37, 15665–15676 (2016). https://doi.org/10.1007/s13277-016-5318-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5318-1

Keywords

Navigation