Skip to main content

Advertisement

Log in

PTK7 regulates radioresistance through nuclear factor-kappa B in esophageal squamous cell carcinoma

  • Original Article
  • Published:
Tumor Biology

Abstract

Tumor radioresistance is a major reason for decreased efficiency of cancer radiation therapy. Although a number of factors involved in radioresistance have been identified, the molecular mechanisms underlying radioresistance of esophageal squamous cell carcinoma (ESCC) have not been elucidated. In this study, we investigated the role of oncogenic protein tyrosine kinase 7 (PTK7) in the resistance of ESCC to radiation therapy. ESCC cell lines with high PTK7 expression were more refractive to radiation than those with low PTK7 levels. In radioresistant ESCC cells, PTK7 knockdown by specific siRNAs decreased the survival of irradiated cells and increased radiation-induced apoptosis, while in radiosensitive ESCC cells, PTK7 overexpression promoted cell survival and inhibited radiation-induced apoptosis. We hypothesized that PTK7 could regulate the activation of transcription factor NF-kB known for its role in cancer radioresistance. Our results indicated that the inhibition of PTK7 suppressed nuclear translocation of NF-kB subunit p65 induced by radiation, suggesting relevance of PTK7 expression with NF-kB activation in radioresistant ESCC. Furthermore, the levels of inhibitor of apoptosis proteins (IAPs), XIAP, and survivin, encoded by NF-kB-regulated genes, were induced in irradiated radioresistant cells but not in radiosensitive cells, while PTK7 knockdown downregulated IAP expression. Our findings revealed a novel mechanism underlying radioresistance in ESCC, which is associated with PTK7 and NF-kB-dependent apoptosis. These results suggest that the manipulation of PTK7 expression can be instrumental in enhancing ESCC response to radiotherapy. This study demonstrates that PTK7 plays a significant role in ESCC radioresistance via the NF-kB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lin DC, Du XL, Wang MR. Protein alterations in ESCC and clinical implications: a review. Dis Esophagus. 2009;22:9–20.

    Article  PubMed  Google Scholar 

  2. Zhang HZ, Jin GF, Shen HB. Epidemiologic differences in esophageal cancer between Asian and Western populations. Chin J Cancer. 2012;31:281–6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kim JJ, Tannock IF. Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer. 2005;5:516–25.

    Article  CAS  PubMed  Google Scholar 

  4. Jameel JK, Rao VS, Cawkwell L, Drew PJ. Radioresistance in carcinoma of the breast. Breast. 2004;13:452–60.

    Article  CAS  PubMed  Google Scholar 

  5. Li HF, Kim JS, Waldman T. Radiation-induced Akt activation modulates radioresistance in human glioblastoma cells. Radiat Oncol. 2009;4:43.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Saunders NA, Simpson F, Thompson EW, Hill MM, Endo-Munoz L, Leggatt G, et al. Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives. EMBO Mol Med. 2012;4:675–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.

    Article  CAS  PubMed  Google Scholar 

  8. Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 2001;410:842–7.

    Article  CAS  PubMed  Google Scholar 

  9. FitzGerald TJ, Henault S, Sakakeeny M, Santucci MA, Pierce JH, Anklesaria P, et al. Expression of transfected recombinant oncogenes increases radiation resistance of clonal hematopoietic and fibroblast cell lines selectively at clinical low dose rate. Radiation research. 1990;122:44–52.

    Article  CAS  PubMed  Google Scholar 

  10. Samid D, Miller AC, Rimoldi D, Gafner J, Clark EP. Increased radiation resistance in transformed and nontransformed cells with elevated ras proto-oncogene expression. Radiation research. 1991;126:244–50.

    Article  CAS  PubMed  Google Scholar 

  11. Pirollo KF, Tong YA, Villegas Z, Chen Y, Chang EH. Oncogene-transformed NIH 3T3 cells display radiation resistance levels indicative of a signal transduction pathway leading to the radiation-resistant phenotype. Radiation research. 1993;135:234–43.

    Article  CAS  PubMed  Google Scholar 

  12. Van Limbergen EJ, Zabrocki P, Porcu M, Hauben E, Cools J, Nuyts S. FLT1 kinase is a mediator of radioresistance and survival in head and neck squamous cell carcinoma. Acta oncologica. 2014;53:637–45.

    Article  PubMed  Google Scholar 

  13. Kim E, Youn H, Kwon T, Son B, Kang J, Yang HJ, et al. PAK1 tyrosine phosphorylation is required to induce epithelial-mesenchymal transition and radioresistance in lung cancer cells. Cancer research. 2014;74:5520–31.

    Article  CAS  PubMed  Google Scholar 

  14. Shin WS, Kwon J, Lee HW, Kang MC, Na HW, Lee ST, et al. Oncogenic role of protein tyrosine kinase 7 in esophageal squamous cell carcinoma. Cancer Sci. 2013;104:1120–6.

    Article  CAS  PubMed  Google Scholar 

  15. Prebet T, Lhoumeau AC, Arnoulet C, Aulas A, Marchetto S, Audebert S, et al. The cell polarity PTK7 receptor acts as a modulator of the chemotherapeutic response in acute myeloid leukemia and impairs clinical outcome. Blood. 2010;116:2315–23.

    Article  CAS  PubMed  Google Scholar 

  16. Ataseven B, Gunesch A, Eiermann W, Kates RE, Högel B, Knyazev P, et al. PTK7 as a potential prognostic and predictive marker of response to adjuvant chemotherapy in breast cancer patients, and resistance to anthracycline drugs. Onco Targets Ther. 2014;7:1723–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li F, Sethi G. Targeting transcription factor nf-kappab to overcome chemoresistance and radioresistance in cancer therapy. Biochim Biophys Acta. 2010;1805:167–80.

    CAS  PubMed  Google Scholar 

  18. Hoesel B, Schmid JA. The complexity of nf-kappab signaling in inflammation and cancer. Mol Cancer. 2013;12:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Baud V, Karin M. Is nf-kappab a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov. 2009;8:33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grandage VL, Gale RE, Linch DC, Khwaja A. PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via nf-kappab, MAPkinase and p53 pathways. Leukemia. 2005;19:586–94.

    CAS  PubMed  Google Scholar 

  21. Debatin KM. Apoptosis pathways in cancer and cancer therapy. Cancer Immunol Immunother. 2004;53:153–9.

    Article  PubMed  Google Scholar 

  22. Ahmed KM, Zhang H, Park CC. NF-kB regulates radioresistance mediated by β1-integrin in three-dimensional culture of breast cancer cells. Cancer research. 2013;73:3737–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang HJ, Youn H, Seong KM, Jin YW, Kim J, Youn B. Phosphorylation of ribosomal protein S3 and antiapoptotic TRAF2 protein mediates radioresistance in non-small cell lung cancer cells. J Biol Chem. 2013;288:2965–75.

    Article  CAS  PubMed  Google Scholar 

  24. Kim JH, Kwon J, Lee HW, Kang MC, Yoon HJ, Lee ST, et al. Protein tyrosine kinase 7 plays a tumor suppressor role by inhibiting ERK and AKT phosphorylation in lung cancer. Oncol Rep. 2014;31:2708–12.

    CAS  PubMed  Google Scholar 

  25. Kwon J, Park M, Kim JH, Lee HW, Kang MC, Park JH. Epigenetic regulation of the novel tumor suppressor cysteine dioxygenase 1 in esophageal squamous cell carcinoma. Tumour biology. 2015;36:7449–56.

    Article  CAS  PubMed  Google Scholar 

  26. Ahmed KM, Dong S, Fan M, Li JJ. Nuclear factor-kappab p65 inhibits mitogen-activated protein kinase signaling pathway in radioresistant breast cancer cells. Molecular cancer research. 2006;4:945–55.

    Article  CAS  PubMed  Google Scholar 

  27. de Almagro MC, Vucic D. The inhibitor of apoptosis (IAP) proteins are critical regulators of signaling pathways and targets for anti-cancer therapy. Exp Oncol. 2012;34:200–11.

    PubMed  Google Scholar 

  28. Srinivasula SM, Ashwell JD. IAPs: what’s in a name? Mol Cell. 2008;30:123–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Al-Sarraf M, Martz K, Herskovic A, Leichman L, Brindle JS, Vaitkevicius VK, et al. Progress report of combined chemoradiotherapy versus radiotherapy alone in patients with esophageal cancer: an intergroup study. J Clin Oncol. 1997;15:277–84.

    CAS  PubMed  Google Scholar 

  30. Tepper J, Krasna MJ, Niedzwiecki D, Hollis D, Reed CE, Goldberg R, et al. Phase iii trial of trimodality therapy with cisplatin, fluorouracil, radiotherapy, and surgery compared with surgery alone for esophageal cancer: Calgb 9781. J Clin Oncol. 2008;26:1086–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nguyen GH, Murph MM, Chang JY. Cancer stem cell radioresistance and enrichment: where frontline radiation therapy may fail in lung and esophageal cancers. Cancers. 2011;3:1232–52.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mossie K, Jallal B, Alves F, Sures I, Plowman GD, Ullrich A. Colon carcinoma kinase-4 defines a new subclass of the receptor tyrosine kinase family. Oncogene. 1995;11:2179–84.

    CAS  PubMed  Google Scholar 

  33. Gartner S, Gunesch A, Knyazeva T, Wolf P, Hogel B, Eiermann W, et al. PTK 7 is a transforming gene and prognostic marker for breast cancer and nodal metastasis involvement. PloS one. 2014;9:e84472.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Meng L, Sefah K, O’Donoghue MB, Zhu G, Shangguan D, Noorali A, et al. Silencing of PTK7 in colon cancer cells: caspase-10-dependent apoptosis via mitochondrial pathway. PloS one. 2010;5:e14018.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chang L, Graham PH, Hao J, Ni J, Bucci J, Cozzi PJ, et al. PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing nhej and hr repair pathways. Cell death & disease. 2014;5:e1437.

    Article  CAS  Google Scholar 

  36. Begg AC, Stewart FA, Vens C. Strategies to improve radiotherapy with targeted drugs. Nat Rev Cancer. 2011;11:239–53.

    Article  CAS  PubMed  Google Scholar 

  37. Chauhan SK, Lee HK, Lee HS, Park EY, Jeong E, Dana R. PTK7+ mononuclear cells express VEGFR2 and contribute to vascular stabilization by upregulating angiopoietin-1. Arteriosclerosis, thrombosis, and vascular biology. 2015;35:1606–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Knizetova P, Ehrmann J, Hlobilkova A, Vancova I, Kalita O, Kolar Z, et al. Autocrine regulation of glioblastoma cell cycle progression, viability and radioresistance through the VEGF-VEGFR2 (KDR) interplay. Cell cycle. 2008;7:2553–61.

    Article  CAS  PubMed  Google Scholar 

  39. Shi L, Zhang S, Wu H, Zhang L, Dai X, Hu J, et al. MiR-200c increases the radiosensitivity of non-small-cell lung cancer cell line A549 by targeting VEGF-VEGFR2 pathway. PloS one. 2013;8:e78344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Godwin P, Baird AM, Heavey S, Barr MP, O’Byrne KJ, Gately K. Targeting nuclear factor-kappa b to overcome resistance to chemotherapy. Frontiers in oncology. 2013;3:120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang N, Dong XP, Zhang SL, You QY, Jiang XT, Zhao XG. Triptolide reverses the Taxol resistance of lung adenocarcinoma by inhibiting the nf-kappab signaling pathway and the expression of nf-kappab-regulated drug-resistant genes. Mol Med Rep. 2016;13:153–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Korea Institute of Radiological and Medical Sciences (KIRAMS) and funded by the Ministry of Science, ICT, and Future Planning, Republic of Korea (1711031800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junhye Kwon or Hae Won Lee.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, M., Yoon, Hj., Kang, M.C. et al. PTK7 regulates radioresistance through nuclear factor-kappa B in esophageal squamous cell carcinoma. Tumor Biol. 37, 14217–14224 (2016). https://doi.org/10.1007/s13277-016-5288-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5288-3

Keywords

Navigation