Skip to main content

Advertisement

Log in

MicroRNA target for MACC1 and CYR61 to inhibit tumor growth in mice with colorectal cancer

  • Original Article
  • Published:
Tumor Biology

Abstract

Cysteine-rich protein 61 (CYR61) and metastasis associated in colon cancer (MACC1) protein promoted human colorectal cancer (CRC) cell metastasis and closely related to the patient’s prognosis in colorectal cancer. The purpose of this article is to investigate whether CYR61 and MACC1 can serve as dual potential targets for gene therapy of human CRC. In this study, microRNA (miRNA) targeting for both CYR61 and MACC1 was used to investigate the mechanism and therapeutic effects for CRC cells and mice with CRC. We observed that silencing miRNA for CYR61 and MACC1 inhibited the epithelial-mesenchymal transition (EMT) process, and co-treatment strengthened this effect. MTT assay showed that the growth of colorectal tumor cells was decreased due to miRNA treatment. Apoptosis assay revealed that miRNA for CYR61 and MACC1 promoted CRC cells apoptotic. The animals’ study results showed that the expression levels of CYR61 and MACC1 were significantly decreased after miRNA-100 and miRNA-143 treatment, respectively. The expression levels of apoptosis-promoting protein were increased significantly after treatment with miRNA-100 and miRNA-143, which suggested that both miRNA-100 and miRNA-143 may induce apoptosis by mitochondria-dependent pathway. In addition, metastasis and invasion assays showed that miRNA-100 and miRNA-143 treatment inhibited obviously migratory and invasive abilities of CRC cells. Furthermore, our data also showed that the tumor growth was significantly inhibited and survival rate of tumor-bearing mice was greatly improved by common treatments of miRNA-100 and miRNA-143. In conclusion, the abilities of apoptosis, metastasis, and invasion in CRC tumor cells were significantly suppressed by miRNA-100 and miRNA-143 targeting CYR61 and MACC1, respectively. As a result, CYR61 and MACC1 may serve as potential targets for gene therapy in human CRC treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel R, Desantis C, Jemal A. Colorectal cancer statistics, 2014. CA: a cancer journal for clinicians. 2014;64:104–17.

    Google Scholar 

  2. Chibaudel B, Bonnetain F, Tournigand C, de Gramont A. Maintenance treatment in metastatic colorectal cancer. The lancet oncology. 2015;16:e583–584.

    Article  PubMed  Google Scholar 

  3. Moilanen JM, Kokkonen N, Loffek S, Vayrynen JP, Syvaniemi E, Hurskainen T, et al. Collagen XVII expression correlates with the invasion and metastasis of colorectal cancer. Human pathology. 2015;46:434–42.

    Article  CAS  PubMed  Google Scholar 

  4. Fan Z, Cui H, Xu X, Lin Z, Zhang X, Kang L, et al. Mir-125a suppresses tumor growth, invasion and metastasis in cervical cancer by targeting stat3. Oncotarget. 2015;6:25266–80.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang XB, Song L, Wen HJ, Bai XX, Li ZJ, Ma LJ. Upregulation of microRNA-31 targeting integrin alpha5 suppresses tumor cell invasion and metastasis by indirectly regulating pi3k/akt pathway in human gastric cancer sgc7901 cells. Tumour Biol. 2016;37(6):8317–25.

    Article  CAS  PubMed  Google Scholar 

  6. Guo J, Yu X, Gu J, Lin Z, Zhao G, Xu F, et al. Regulation of cxcr4/akt-signaling-induced cell invasion and tumor metastasis by RhoA, Rac-1, and Cdc42 in human esophageal cancer. Tumour Biol 2016;37(5):6371–8.

  7. Jiang N, Deng JY, Liu Y, Ke B, Liu HG, Liang H. Incorporation of perineural invasion of gastric carcinoma into the 7th edition tumor-node-metastasis staging system. Tumour Biol. 2014;35:9429–36.

    Article  CAS  PubMed  Google Scholar 

  8. Bukurova Iu A, Khankin SL, Krasnov GS, Grigor’eva ES, Mashkova TD, Lisitsin NA, et al. Comparison of 2D analysis and bioinformatics search efficiency for colon cancer marker identification. Molekuliarnaia biologiia. 2010;44:375–81.

    CAS  PubMed  Google Scholar 

  9. Thompson BA, Goldgar DE, Paterson C, Clendenning M, Walters R, Arnold S, et al. A multifactorial likelihood model for MMR gene variant classification incorporating probabilities based on sequence bioinformatics and tumor characteristics: a report from the colon cancer family registry. Human mutation. 2013;34:200–9.

    Article  CAS  PubMed  Google Scholar 

  10. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nature reviews Genetics. 2004;5:522–31.

    Article  CAS  PubMed  Google Scholar 

  11. Chen Y, Wakili R, Xiao J, Wu CT, Luo X, Clauss S, et al. Detailed characterization of microRNA changes in a canine heart failure model: relationship to arrhythmogenic structural remodeling. Journal of molecular and cellular cardiology. 2014;77:113–24.

    Article  CAS  PubMed  Google Scholar 

  12. Santos-Carballal B, Aaldering LJ, Ritzefeld M, Pereira S, Sewald N, Moerschbacher BM, et al. Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to mcf-7 breast cancer cells. Scientific reports. 2015;5:13567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ozek NS, Tuna S, Erson-Bensan AE, Severcan F. Characterization of microRNA-125b expression in MCF7 breast cancer cells by ATR-FTIR spectroscopy. The Analyst. 2010;135:3094–102.

    Article  PubMed  Google Scholar 

  14. Busacca S, Germano S, De Cecco L, Rinaldi M, Comoglio F, Favero F, et al. MicroRNA signature of malignant mesothelioma with potential diagnostic and prognostic implications. American Journal of Respiratory Cell and Molecular Biology. 2010;42:312–9.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang W, Zhang J, Yan W, You G, Bao Z, Li S, et al. Whole-genome microRNA expression profiling identifies a 5-microRNA signature as a prognostic biomarker in Chinese patients with primary glioblastoma multiforme. Cancer. 2013;119:814–24.

    Article  CAS  PubMed  Google Scholar 

  16. Konishi H, Fujiya M, Ueno N, Moriichi K, Sasajima J, Ikuta K, et al. MicroRNA-26a and -584 inhibit the colorectal cancer progression through inhibition of the binding of HNRNP A1-CDK6 mRNA. Biochemical and biophysical research communications. 2015;467:847–52.

    Article  CAS  PubMed  Google Scholar 

  17. Fei BY, Wang XY, Fang XD. MicroRNA-143 replenishment re-sensitizes colorectal cancer cells harboring mutant, but not wild-type, kras to paclitaxel treatment. Tumour Biol. 2016;37(5):5829–35.

  18. Xu ST, Ding X, Ni QF, Jin SJ. Targeting MACC1 by RNA interference inhibits proliferation and invasion of bladder urothelial carcinoma in t24 cells. International journal of clinical and experimental pathology. 2015;8:7937–44.

    PubMed  PubMed Central  Google Scholar 

  19. Han S, Bui NT, Ho MT, Kim YM, Cho M, Shin DB. Dexamethasone inhibits tgf-beta1-induced cell migration by regulating the erk and akt pathways in human colon cancer cells via CYR61. Cancer Res Treat. 2016;48(3):1141–53.

  20. Haque I, Banerjee S, Mehta S, De A, Majumder M, Mayo MS, et al. Cysteine-rich 61-connective tissue growth factor-nephroblastoma-overexpressed 5 (ccn5)/WNT-1-induced signaling protein-2 (wisp-2) regulates microRNA-10b via hypoxia-inducible factor-1alpha-twist signaling networks in human breast cancer cells. The Journal of biological chemistry. 2011;286:43475–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Osaki M, Inaba A, Nishikawa K, Sugimoto Y, Shomori K, Inoue T, et al. Cysteine-rich protein 61 suppresses cell invasion via down-regulation of matrix metalloproteinase-7 expression in the human gastric carcinoma cell line mkn-45. Molecular medicine reports. 2010;3:711–5.

    Article  CAS  PubMed  Google Scholar 

  22. Sun ZJ, Wang Y, Cai Z, Chen PP, Tong XJ, Xie D. Involvement of CYR61 in growth, migration, and metastasis of prostate cancer cells. British journal of cancer. 2008;99:1656–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun L, Duan J, Jiang Y, Wang L, Huang N, Lin L, et al. Metastasis-associated in colon cancer-1 upregulates vascular endothelial growth factor-c/d to promote lymphangiogenesis in human gastric cancer. Cancer letters. 2015;357:242–53.

    Article  CAS  PubMed  Google Scholar 

  24. Lederer A, Herrmann P, Seehofer D, Dietel M, Pratschke J, Schlag P, et al. Metastasis-associated in colon cancer 1 is an independent prognostic biomarker for survival in Klatskin tumor patients. Hepatology. 2015;62:841–50.

    Article  CAS  PubMed  Google Scholar 

  25. Stein U, Walther W, Arlt F, Schwabe H, Smith J, Fichtner I, et al. Macc1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nature medicine. 2009;15:59–67.

    Article  CAS  PubMed  Google Scholar 

  26. Boardman LA. Overexpression of MACC1 leads to downstream activation of hgf/met and potentiates metastasis and recurrence of colorectal cancer. Genome medicine. 2009;1:36.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shimokawa H, Uramoto H, Onitsuka T, Chundong G, Hanagiri T, Oyama T, et al. Overexpression of MACC1 mRNA in lung adenocarcinoma is associated with postoperative recurrence. The Journal of thoracic and cardiovascular surgery. 2011;141:895–8.

    Article  CAS  PubMed  Google Scholar 

  28. Migliore C, Martin V, Leoni VP, Restivo A, Atzori L, Petrelli A, et al. Mir-1 downregulation cooperates with MACC1 in promoting met overexpression in human colon cancer. Clinical cancer research: an official journal of the American Association for Cancer Research. 2012;18:737–47.

    Article  CAS  Google Scholar 

  29. Yang T, Kong B, Kuang YQ, Cheng L, Gu JW, Zhang JH, et al. Overexpression of MACC1 protein and its clinical implications in patients with glioma. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2014;35:815–9.

    Article  CAS  Google Scholar 

  30. Wang Z, Li Z, Wu C, Wang Y, Xia Y, Chen L, et al. Macc1 overexpression predicts a poor prognosis for non-small cell lung cancer. Med Oncol. 2014;31:790.

    Article  PubMed  Google Scholar 

  31. Wang G, Fu Z, Li D. Macc1 overexpression and survival in solid tumors: a meta-analysis. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2015;36:1055–65.

    Article  Google Scholar 

  32. Li H, Zhang H, Zhao S, Shi Y, Yao J, Zhang Y, et al. Overexpression of MACC1 and the association with hepatocyte growth factor/c-met in epithelial ovarian cancer. Oncology letters. 2015;9:1989–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Da Ros VG, Gutierrez-Perez I, Ferres-Marco D, Dominguez M. Dampening the signals transduced through hedgehog via microRNA MIR-7 facilitates notch-induced tumourigenesis. PLoS biology. 2013;11:e1001554.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wai-Hoe L, Wing-Seng L, Ismail Z, Lay-Harn G. Sds-page-based quantitative assay for screening of kidney stone disease. Biological procedures online. 2009;11:145–60.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bai FL, Yu YH, Tian H, Ren GP, Wang H, Zhou B, et al. Genetically engineered Newcastle disease virus expressing interleukin-2 and TNF-related apoptosis-inducing ligand for cancer therapy. Cancer Biology & Therapy. 2014;15:1226–38.

    Article  CAS  Google Scholar 

  36. Yang L, Wu X, Liu F, Duan Y, Li S. Novel biodegradable polylactide/poly(ethylene glycol) micelles prepared by direct dissolution method for controlled delivery of anticancer drugs. Pharmaceutical research. 2009;26:2332–42.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Wang Z, Chen M, Peng L, Wang X, Ma Q, et al. MicroRNA-143 targets MACC1 to inhibit cell invasion and migration in colorectal cancer. Molecular cancer. 2012;11:23.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang Y, Diao Z, Su L, Sun H, Li R, Cui H, et al. MicroRNA-155 contributes to preeclampsia by down-regulating CYR61. Am J Obstet Gynecol. 2010;202:466. e461-467.

    Article  PubMed  Google Scholar 

  39. Pichler M, Calin GA. MicroRNAs in cancer: from developmental genes in worms to their clinical application in patients. British journal of cancer. 2015;113:569–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pooja T, Karunagaran D. Emodin suppresses WNT signaling in human colorectal cancer cells sw480 and sw620. European Journal of Pharmacology. 2014;742:55–64.

    Article  CAS  PubMed  Google Scholar 

  41. Flatmark K, Maelandsmo GM, Martinsen M, Rasmussen H, Fodstad O. Twelve colorectal cancer cell lines exhibit highly variable growth and metastatic capacities in an orthotopic model in nude mice. Eur J Cancer. 2004;40:1593–8.

    Article  PubMed  Google Scholar 

  42. Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids—the mix of hormones and biomarkers. Nature reviews Clinical oncology. 2011;8:467–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Isella C, Mellano A, Galimi F, Petti C, Capussotti L, De Simone M, et al. MACC1 mRNA levels predict cancer recurrence after resection of colorectal cancer liver metastases. Annals of surgery. 2013;257:1089–95.

    Article  PubMed  Google Scholar 

  44. Nicolas FJ, Lehmann K, Warne PH, Hill CS, Downward J. Epithelial to mesenchymal transition in Madin-Darby canine kidney cells is accompanied by down-regulation of SMAD3 expression, leading to resistance to transforming growth factor-beta-induced growth arrest. The Journal of biological chemistry. 2003;278:3251–6.

    Article  CAS  PubMed  Google Scholar 

  45. Lemos C, Hardt MS, Juneja M, Voss C, Forster S, Jerchow B, et al. Macc1 induces tumor progression in transgenic mice and colorectal cancer patients via increased pluripotency markers nanog and oct4. Clin Cancer Res. 2016;22(11):2812–24.

  46. Cecchi F, Rabe DC, Bottaro DP. Targeting the hgf/met signaling pathway in cancer therapy. Expert opinion on therapeutic targets. 2012;16:553–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ren B, Zakharov V, Yang Q, McMahon L, Yu J, Cao W. Macc1 is related to colorectal cancer initiation and early-stage invasive growth. American journal of clinical pathology. 2013;140:701–7.

    Article  PubMed  Google Scholar 

  48. Ladwa R, Pringle H, Kumar R, West K. Expression of CTGF and CYR61 in colorectal cancer. Journal of clinical pathology. 2011;64:58–64.

    Article  CAS  PubMed  Google Scholar 

  49. Ilm K, Kemmner W, Osterland M, Burock S, Koch G, Herrmann P, et al. High MACC1 expression in combination with mutated kras g13 indicates poor survival of colorectal cancer patients. Molecular cancer. 2015;14:38.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jeong D, Heo S, Sung Ahn T, Lee S, Park S, Kim H, et al. Cyr61 expression is associated with prognosis in patients with colorectal cancer. BMC cancer. 2014;14:164.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zaharie F, Muresan MS, Petrushev B, Berce C, Gafencu GA, Selicean S, et al. Exosome-carried microRNA-375 inhibits cell progression and dissemination via bcl-2 blocking in colon cancer. Journal of gastrointestinal and liver diseases: JGLD. 2015;24:435–43.

    PubMed  Google Scholar 

  52. Riethmuller M, Burger N, Bauer G. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling. Redox biology. 2015;6:157–68.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sampath D, Winneker RC, Zhang Z. Cyr61, a member of the ccn family, is required for mcf-7 cell proliferation: regulation by 17beta-estradiol and overexpression in human breast cancer. Endocrinology. 2001;142:2540–8.

    CAS  PubMed  Google Scholar 

  54. Huang Y, Zhang H, Cai J, Fang L, Wu J, Ye C, et al. Overexpression of MACC1 and its significance in human breast cancer progression. Cell & Bioscience. 2013;3:16.

    Article  CAS  Google Scholar 

  55. Lin L, Huang H, Liao W, Ma H, Liu J, Wang L, et al. Macc1 supports human gastric cancer growth under metabolic stress by enhancing the Warburg effect. Oncogene. 2015;34:2700–10.

    Article  CAS  PubMed  Google Scholar 

  56. Simmer F, Venderbosch S, Dijkstra JR, Vink-Borger EM, Faber C, Mekenkamp LJ, et al. MicroRNA-143 is a putative predictive factor for the response to fluoropyrimidine-based chemotherapy in patients with metastatic colorectal cancer. Oncotarget. 2015;6:22996–3007.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhang S, Yuan W, Tang W, Xu C, Ma J. Expression of microRNA-100 and its relation with prognosis of colorectal cancer. Zhonghua zhong liu za zhi Chinese J Oncol 2015;37:603-608.

Download references

Acknowledgments

This work was supported by the health and family planning commission of HeBei,China (No.20160203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingfeng Gu.

Ethics declarations

Authors’ contribution

All authors have read and approved the final paper.

Compliance with ethical standards

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Gu, J. & Gao, Y. MicroRNA target for MACC1 and CYR61 to inhibit tumor growth in mice with colorectal cancer. Tumor Biol. 37, 13983–13993 (2016). https://doi.org/10.1007/s13277-016-5252-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5252-2

Keywords

Navigation