Skip to main content
Log in

Yeast two-hybrid screening identified WDR77 as a novel interacting partner of TSC22D2

  • Original Article
  • Published:
Tumor Biology

Abstract

Transforming growth factor β-stimulated clone 22 domain family, member 2 (TSC22D2), a member of the TSC22D family, has been implicated as a tumor-associated gene, but its function remains unknown. To further explore its biological role, yeast two-hybrid screening combined with multiple bioinformatics tools was used to identify 44 potential interacting partners of the TSC22D2 protein that were mainly involved in gene transcription, cellular metabolism, and cell cycle regulation. The protein WD repeat domain 77 (WDR77) was selected for further validation due to its function in the cell cycle and tumor development, as well as its high detection frequency in the yeast two-hybrid assay. Immunoprecipitation and immunofluorescence experiments confirmed an interaction between the TSC22D2 and WDR77 proteins. Our work greatly expands the putative protein interaction network of TSC22D2 and provides deeper insight into the biological functions of the TSC22D2 and WDR77 proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liang F, Zeng Z, Li Q, Li X, Li Z, Gong Z, et al. TSC22D2 interacts with PKM2 and inhibits cell growth in colorectal cancer. Int J Oncol. 2016 (in press).

  2. Shibanuma M, Kuroki T, Nose K. Isolation of a gene encoding a putative leucine zipper structure that is induced by transforming growth factor beta 1 and other growth factors. J Biol Chem. 1992;267:10219–24.

    CAS  PubMed  Google Scholar 

  3. Kester HA, Blanchetot C, den Hertog J, van der Saag PT, van der Burg B. Transforming growth factor-beta-stimulated clone-22 is a member of a family of leucine zipper proteins that can homo- and heterodimerize and has transcriptional repressor activity. J Biol Chem. 1999;274:27439–47.

    Article  CAS  PubMed  Google Scholar 

  4. Fiol DF, Mak SK, Kultz D. Specific TSC22 domain transcripts are hypertonically induced and alternatively spliced to protect mouse kidney cells during osmotic stress. Febs J. 2007;274:109–24.

    Article  CAS  PubMed  Google Scholar 

  5. Ohta S, Yanagihara K, Nagata K. Mechanism of apoptotic cell death of human gastric carcinoma cells mediated by transforming growth factor beta. Biochem J. 1997;324(Pt 3):777–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. D'Adamio F, Zollo O, Moraca R, Ayroldi E, Bruscoli S, Bartoli A, et al. A new dexamethasone-induced gene of the leucine zipper family protects T lymphocytes from TCR/CD3-activated cell death. Immunity. 1997;7:803–12.

    Article  PubMed  Google Scholar 

  7. Dohrmann CE, Belaoussoff M, Raftery LA. Dynamic expression of TSC-22 at sites of epithelial-mesenchymal interactions during mouse development. Mech Dev. 1999;84:147–51.

    Article  CAS  PubMed  Google Scholar 

  8. Gluderer S, Brunner E, Germann M, Jovaisaite V, Li C, Rentsch CA, et al. Madm (Mlf1 adapter molecule) cooperates with Bunched A to promote growth in Drosophila. J Biol. 2010;9:9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Canterini S, Bosco A, Carletti V, Fuso A, Curci A, Mangia F, et al. Subcellular TSC22D4 localization in cerebellum granule neurons of the mouse depends on development and differentiation. Cerebellum. 2012;11:28–40.

    Article  CAS  PubMed  Google Scholar 

  10. Beaulieu E, Morand EF. Role of GILZ in immune regulation, glucocorticoid actions and rheumatoid arthritis. Nat Rev Rheumatol. 2011;7:340–8.

    Article  CAS  PubMed  Google Scholar 

  11. Riccardi C. GILZ (glucocorticoid-induced leucine zipper), a mediator of the anti-inflammatory and immunosuppressive activity of glucocorticoids. Ann Ig. 2010;22:53–9.

    CAS  PubMed  Google Scholar 

  12. Riccardi C, Zollo O, Nocentini G, Bruscoli S, Bartoli A, D'Adamio F, et al. Glucocorticoid hormones in the regulation of cell death. Therapie. 2000;55:165–9.

    CAS  PubMed  Google Scholar 

  13. Kawamata H, Nakashiro K, Uchida D, Hino S, Omotehara F, Yoshida H, et al. Induction of TSC-22 by treatment with a new anti-cancer drug, vesnarinone, in a human salivary gland cancer cell. Br J Cancer. 1998;77:71–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shostak KO, Dmitrenko VV, Vudmaska MI, Naidenov VG, Beletskii AV, Malisheva TA, et al. Patterns of expression of TSC-22 protein in astrocytic gliomas. Exp Oncol. 2005;27:314–8.

    CAS  PubMed  Google Scholar 

  15. Iida M, Anna CH, Gaskin ND, Walker NJ, Devereux TR. The putative tumor suppressor Tsc-22 is downregulated early in chemically induced hepatocarcinogenesis and may be a suppressor of Gadd45b. Toxicol Sci. 2007;99:43–50.

    Article  CAS  PubMed  Google Scholar 

  16. Yu J, Ershler M, Yu L, Wei M, Hackanson B, Yokohama A, et al. TSC-22 contributes to hematopoietic precursor cell proliferation and repopulation and is epigenetically silenced in large granular lymphocyte leukemia. Blood. 2009;113:5558–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yoon CH, Rho SB, Kim ST, Kho S, Park J, Jang IS, et al. Crucial role of TSC-22 in preventing the proteasomal degradation of p53 in cervical cancer. Plos One. 2012;7:e42006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nakamura M, Kitaura J, Enomoto Y, Lu Y, Nishimura K, Isobe M, et al. Transforming growth factor-beta-stimulated clone-22 is a negative-feedback regulator of Ras/Raf signaling: implications for tumorigenesis. Cancer Sci. 2012;103:26–33.

    Article  CAS  PubMed  Google Scholar 

  19. Ayroldi E, Zollo O, Bastianelli A, Marchetti C, Agostini M, Di Virgilio R, et al. GILZ mediates the antiproliferative activity of glucocorticoids by negative regulation of Ras signaling. J Clin Invest. 2007;117:1605–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ayroldi E, Petrillo MG, Bastianelli A, Marchetti MC, Ronchetti S, Nocentini G, et al. L-GILZ binds p53 and MDM2 and suppresses tumor growth through p53 activation in human cancer cells. Cell Death Differ. 2015;22:118–30.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou L, Wu H, Lee P, Wang Z. Roles of the androgen receptor cofactor p44 in the growth of prostate epithelial cells. J Mol Endocrinol. 2006;37:283–300.

    Article  CAS  PubMed  Google Scholar 

  22. Gao S, Wang Z. Subcellular localization of p44/WDR77 determines proliferation and differentiation of prostate epithelial cells. Plos One. 2012;7:e49173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peng Y, Chen F, Melamed J, Chiriboga L, Wei J, Kong X, et al. Distinct nuclear and cytoplasmic functions of androgen receptor cofactor p44 and association with androgen-independent prostate cancer. Proc Natl Acad Sci U S A. 2008;105:5236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liang JJ, Wang Z, Chiriboga L, Greco MA, Shapiro E, Huang H, et al. The expression and function of androgen receptor coactivator p44 and protein arginine methyltransferase 5 in the developing testis and testicular tumors. J Urol. 2007;177:1918–22.

    Article  CAS  PubMed  Google Scholar 

  25. Ligr M, Patwa RR, Daniels G, Pan L, Wu X, Li Y, et al. Expression and function of androgen receptor coactivator p44/Mep50/WDR77 in ovarian cancer. Plos One. 2011;6:e26250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peng Y, Li Y, Gellert LL, Zou X, Wang J, Singh B, et al. Androgen receptor coactivator p44/Mep50 in breast cancer growth and invasion. J Cell Mol Med. 2010;14:2780–9.

    Article  CAS  PubMed  Google Scholar 

  27. Gu Z, Zhang F, Wang ZQ, Ma W, Davis RE, Wang Z. The p44/wdr77-dependent cellular proliferation process during lung development is re-activated in lung cancer. Oncogene. 2013;32:1888–900.

    Article  CAS  PubMed  Google Scholar 

  28. Spyrou I, Sifakis S, Ploumidis A, Papalampros AE, Felekouras E, Tsatsakis AM, et al. Expression profile of CYP1A1 and CYP1B1 enzymes in endometrial tumors. Tumor Biol. 2014;35:9549–56.

    Article  CAS  Google Scholar 

  29. Zeng Z, Bo H, Gong Z, Lian Y, Li X, Li X, et al. AFAP1-AS1, a long noncoding RNA upregulated in lung cancer and promotes invasion and metastasis. Tumor Biol. 2015.

  30. Liu XF, Bera TK, Kahue C, Escobar T, Fei Z, Raciti GA, et al. ANKRD26 and its interacting partners TRIO, GPS2, HMMR and DIPA regulate adipogenesis in 3T3-L1 cells. Plos One. 2012;7:e38130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chai Y, Liu X, Dai L, Li Y, Liu M, Zhang JY. Overexpression of HCC1/CAPERalpha may play a role in lung cancer carcinogenesis. Tumor Biol. 2014;35:6311–7.

    Article  CAS  Google Scholar 

  32. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36:W5–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen D, et al. The BioGRID interaction database: 2015 update. Nucleic Acids Res. 2015;43:D470–8.

    Article  PubMed  Google Scholar 

  35. Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 2012;40:D857–61.

    Article  CAS  PubMed  Google Scholar 

  36. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–52.

    Article  PubMed  Google Scholar 

  37. Mitchell A, Chang HY, Daugherty L, Fraser M, Hunter S, Lopez R, et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 2015;43:D213–21.

    Article  PubMed  Google Scholar 

  38. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  Google Scholar 

  39. Safran M, Dalah I, Alexander J, Rosen N, Iny ST, Shmoish M, et al. GeneCards Version 3: the human gene integrator. Database (Oxford). 2010;2010:q20.

    Article  Google Scholar 

  40. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A. 2001;98:4569–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Formstecher E, Aresta S, Collura V, Hamburger A, Meil A, Trehin A, et al. Protein interaction mapping: a Drosophila case study. Genome Res. 2005;15:376–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Riccardi C, Bruscoli S, Ayroldi E, Agostini M, Migliorati G. GILZ, a glucocorticoid hormone induced gene, modulates T lymphocytes activation and death through interaction with NF-kB. Adv Exp Med Biol. 2001;495:31–9.

    Article  CAS  PubMed  Google Scholar 

  43. Ayroldi E, Zollo O, Macchiarulo A, Di Marco B, Marchetti C, Riccardi C. Glucocorticoid-induced leucine zipper inhibits the Raf-extracellular signal-regulated kinase pathway by binding to Raf-1. Mol Cell Biol. 2002;22:7929–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vago JP, Tavares LP, Garcia CC, Lima KM, Perucci LO, Vieira EL, et al. The role and effects of glucocorticoid-induced leucine zipper in the context of inflammation resolution. J Immunol. 2015;194:4940–50.

    Article  CAS  PubMed  Google Scholar 

  45. Wilson CH, Crombie C, van der Weyden L, Poulogiannis G, Rust AG, Pardo M, et al. Nuclear receptor binding protein 1 regulates intestinal progenitor cell homeostasis and tumour formation. Embo J. 2012;31:2486–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ruiz C, Oeggerli M, Germann M, Gluderer S, Stocker H, Andreozzi M, et al. High NRBP1 expression in prostate cancer is linked with poor clinical outcomes and increased cancer cell growth. Prostate. 2012;72:1678–87.

    Article  CAS  PubMed  Google Scholar 

  47. Kerr JS, Wilson CH. Nuclear receptor-binding protein 1: a novel tumour suppressor and pseudokinase. Biochem Soc Trans. 2013;41:1055–60.

    Article  CAS  PubMed  Google Scholar 

  48. Hilt W, Wolf DH. Proteasomes: destruction as a programme. Trends Biochem Sci. 1996;21:96–102.

    Article  CAS  PubMed  Google Scholar 

  49. Smith DK, Xue H. Sequence profiles of immunoglobulin and immunoglobulin-like domains. J Mol Biol. 1997;274:530–45.

    Article  CAS  PubMed  Google Scholar 

  50. Bateman A, Sandford R. The PLAT domain: a new piece in the PKD1 puzzle. Curr Biol. 1999;9:R588–90.

    Article  CAS  PubMed  Google Scholar 

  51. Gamsjaeger R, Liew CK, Loughlin FE, Crossley M, Mackay JP. Sticky fingers: zinc-fingers as protein-recognition motifs. Trends Biochem Sci. 2007;32:63–70.

    Article  CAS  PubMed  Google Scholar 

  52. Hino S, Kawamata H, Uchida D, Omotehara F, Miwa Y, Begum NM, et al. Nuclear translocation of TSC-22 (TGF-beta-stimulated clone-22) concomitant with apoptosis: TSC-22 as a putative transcriptional regulator. Biochem Biophys Res Commun. 2000;278:659–64.

    Article  CAS  PubMed  Google Scholar 

  53. Friesen WJ, Wyce A, Paushkin S, Abel L, Rappsilber J, Mann M, et al. A novel WD repeat protein component of the methylosome binds Sm proteins. J Biol Chem. 2002;277:8243–7.

    Article  CAS  PubMed  Google Scholar 

  54. Antonysamy S, Bonday Z, Campbell RM, Doyle B, Druzina Z, Gheyi T, et al. Crystal structure of the human PRMT5:MEP50 complex. Proc Natl Acad Sci U S A. 2012;109:17960–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ho MC, Wilczek C, Bonanno JB, Xing L, Seznec J, Matsui T, et al. Structure of the arginine methyltransferase PRMT5-MEP50 reveals a mechanism for substrate specificity. Plos One. 2013;8:e57008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yi P, Gao S, Gu Z, Huang T, Wang Z. P44/WDR77 restricts the sensitivity of proliferating cells to TGFbeta signaling. Biochem Biophys Res Commun. 2014;450:409–15.

    Article  CAS  PubMed  Google Scholar 

  57. Choi SJ, Moon JH, Ahn YW, Ahn JH, Kim DU, Han TH. Tsc-22 enhances TGF-beta signaling by associating with Smad4 and induces erythroid cell differentiation. Mol Cell Biochem. 2005;271:23–8.

    Article  CAS  PubMed  Google Scholar 

  58. Uchida D, Omotehara F, Nakashiro K, Tateishi Y, Hino S, Begum NM, et al. Posttranscriptional regulation of TSC-22 (TGF-beta-stimulated clone-22) gene by TGF-beta 1. Biochem Biophys Res Commun. 2003;305:846–54.

    Article  CAS  PubMed  Google Scholar 

  59. Gupta RA, Sarraf P, Brockman JA, Shappell SB, Raftery LA, Willson TM, et al. Peroxisome proliferator-activated receptor gamma and transforming growth factor-beta pathways inhibit intestinal epithelial cell growth by regulating levels of TSC-22. J Biol Chem. 2003;278:7431–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from The National Natural Science Foundation of China (81272298, 81372907, 81472531, and 81572787) and the Natural Science Foundation of Hunan Province (14JJ1010 and 2015JJ1022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoyang Zeng or Wei Xiong.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Chen, P., Zeng, Z. et al. Yeast two-hybrid screening identified WDR77 as a novel interacting partner of TSC22D2. Tumor Biol. 37, 12503–12512 (2016). https://doi.org/10.1007/s13277-016-5113-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5113-z

Keywords

Navigation