Skip to main content

Advertisement

Log in

25-methoxyl-dammarane-3β, 12β, 20-triol and artemisinin synergistically inhibit MDA-MB-231 cell proliferation through downregulation of testes-specific protease 50 (TSP50) expression

  • Original Article
  • Published:
Tumor Biology

Abstract

While the incidence of cancer continues to increase, the current therapeutic options remain imperfect. Therefore, there is an urgent need to discover new targeted anti-cancer therapies. Testes-specific protease 50 (TSP50) is abnormally expressed in most cancer tissues and downregulation of TSP50 expression can reduce cell proliferation and induce cell apoptosis, which makes it a potential target for cancer therapy. In this study, we constructed a firefly luciferase reporter pGL3-TSP50-3′-UTR as a drug screening model to screen potential candidate compounds that target TSP50 mRNA. We identified the compound 7P3A, which consists of 70 % 25-methoxyl-dammarane-3β, 12β, 20-triol and 30 % artemisinin, as being capable of inhibiting the TSP50-3′-UTR reporter activity, as well as the expression of TSP50. Further investigation revealed that 7P3A could inhibit MDA-MB-231 cell proliferation and induce cell cycle arrest, and over-expression of TSP50 partially reversed the effect of 7P3A. In vivo investigation showed that 7P3A could inhibit tumor growth in a xenograft model of breast cancer. These results suggest that 7P3A exhibits anti-cancer effects, in part, through downregulation of TSP50 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. Ca-Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  2. Siegel R, Ma JM, Zou ZH, Jemal A. Cancer statistics, 2014. Ca-Cancer J Clin. 2014;64:9–29.

    Article  PubMed  Google Scholar 

  3. Azim HA, Ibrahim AS. Breast cancer in Egypt, China and Chinese: statistics and beyond. J Thorac Dis. 2014;6:864–6.

    PubMed  PubMed Central  Google Scholar 

  4. DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, et al. Cancer treatment and survivorship statistics, 2014. Ca-Cancer J Clin. 2014;64:252–71.

    Article  PubMed  Google Scholar 

  5. Yuan L, Shan J, De Risi D, Broome J, Lovecchio J, Gal D, et al. Isolation of a novel gene, TSP50, by a hypomethylated DNA fragment in human breast cancer. Cancer Res. 1999;59:3215–21.

    CAS  PubMed  Google Scholar 

  6. Xu HP, Yuan L, Shan J, Feng H. Localization and expression of TSP50 protein in human and rodent testes. Urology. 2004;64:826–32.

    Article  PubMed  Google Scholar 

  7. Xu H, Shan J, Jurukovski V, Yuan L, Li J, Tian K. TSP50 encodes a testis-specific protease and is negatively regulated by p53. Cancer Res. 2007;67:1239–45.

    Article  CAS  PubMed  Google Scholar 

  8. Shan J, Yuan L, Xiao Q, Chiorazzi N, Budman D, Teichberg S, et al. TSP50, a possible protease in human testes, is activated in breast cancer epithelial cells. Cancer Res. 2002;62:290–4.

    CAS  PubMed  Google Scholar 

  9. Song ZB, Bao YL, Zhang Y, Mi XG, Wu P, Wu Y, et al. Testes-specific protease 50 (TSP50) promotes cell proliferation through the activation of the nuclear factor kappaB (NF-kappaB) signalling pathway. Biochem J. 2011;436:457–67.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou L, Bao YL, Zhang Y, Wu Y, Yu CL, Huang YX, et al. Knockdown of TSP50 inhibits cell proliferation and induces apoptosis in P19 cells. IUBMB Life. 2010;62:825–32.

    Article  CAS  PubMed  Google Scholar 

  11. Song ZB, Liu B, Li YY, Wu P, Bao YL, Huang YX, et al. The catalytic triad of testes-specific protease 50 (TSP50) is essential for its function in cell proliferation. Cell Signal. 2014;26:2266–75.

    Article  CAS  PubMed  Google Scholar 

  12. Li YY, Bao YL, Song ZB, Sun LG, Wu P, Zhang Y, et al. The threonine protease activity of testes-specific protease 50 (TSP50) is essential for its function in cell proliferation. PLoS One. 2012;7, e35030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song ZB, Ni JS, Wu P, Bao YL, Liu T, Li M, et al. Testes-specific protease 50 promotes cell invasion and metastasis by increasing NF-kappaB-dependent matrix metalloproteinase-9 expression. Cell Death Dis. 2015;6, e1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mi XG, Song ZB, Wu P, Zhang YW, Sun LG, Bao YL, et al. Alantolactone induces cell apoptosis partially through down-regulation of testes-specific protease 50 expression. Toxicol Lett. 2014;224:349–55.

    Article  CAS  PubMed  Google Scholar 

  15. Pesole G, Grillo G, Larizza A, Liuni S. The untranslated regions of eukaryotic mRNAs: structure, function, evolution and bioinformatic tools for their analysis. Brief Bioinform. 2000;1:236–49.

    Article  CAS  PubMed  Google Scholar 

  16. Wang M, Bao YL, Wu Y, Yu CL, Meng XY, Huang YX, et al. Basic FGF downregulates TSP50 expression via the ERK/Sp1 pathway. J Cell Biochem. 2010;111:75–81.

    Article  CAS  PubMed  Google Scholar 

  17. Kosaka-Suzuki N, Suzuki T, Pugacheva EM, Vostrov AA, Morse 3rd HC, Loukinov D, et al. Transcription factor BORIS (Brother of the Regulator of Imprinted Sites) directly induces expression of a cancer-testis antigen, TSP50, through regulated binding of BORIS to the promoter. J Biol Chem. 2011;286:27378–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang M, Bao YL, Wu Y, Yu CL, Meng XY, Xu HP, et al. Identification and characterization of the human testes-specific protease 50 gene promoter. DNA Cell Biol. 2008;27:307–14.

    Article  CAS  PubMed  Google Scholar 

  19. Conne B, Stutz A, Vassalli JD. The 3′ untranslated region of messenger RNA: a molecular ‘hotspot’ for pathology? Nat Med. 2000;6:637–41.

    Article  CAS  PubMed  Google Scholar 

  20. Lopez-Garrido J, Puerta-Fernandez E, Casadesus J. A eukaryotic-like 3′ untranslated region in Salmonella enterica hilD mRNA. Nucleic Acids Res. 2014;42:5894–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bi X, Zhao Y, Fang W, Yang W. Anticancer activity of Panax notoginseng extract 20(S)-25-OCH3-PPD: targetting beta-catenin signalling. Clin Exp Pharmacol Physiol. 2009;36:1074–8.

    Article  CAS  PubMed  Google Scholar 

  22. Liu Y, Bao YL, Yu CL, Wu Y, Yang XG, Xu HP, et al. Development and characterization of monoclonal antibody specifically against TSP50. Chem Res Chinese U. 2009;25:483–6.

    CAS  Google Scholar 

  23. Shi Y, Bao YL, Wu Y, Yu CL, Huang YX, Sun Y, et al. Alantolactone inhibits cell proliferation by interrupting the interaction between Cripto-1 and activin receptor type II A in activin signaling pathway. J Biomol Screen. 2011;16:525–35.

    Article  CAS  PubMed  Google Scholar 

  24. Yao Y, Zhang YW, Sun LG, Liu BA, Bao YL, Lin H, et al. Juglanthraquinone C, a novel natural compound derived from Juglans mandshurica Maxim, induces S phase arrest and apoptosis in HepG2 cells. Apoptosis. 2012;17:832–41.

    Article  CAS  PubMed  Google Scholar 

  25. Zheng X, Dai X, Zhao Y, Chen Q, Lu F, Yao D, et al. Restructuring of the dinucleotide-binding fold in an NADP(H) sensor protein. Proc Natl Acad Sci U S A. 2007;104:8809–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang W, Zhang X, Qin JJ, Voruganti S, Nag SA, Wang MH, et al. Natural product ginsenoside 25-OCH3-PPD inhibits breast cancer growth and metastasis through down-regulating MDM2. PLoS One. 2012;7, e41586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kale A, Soylemez F, Ensari A. Expressions of proliferation markers (Ki-67, proliferating cell nuclear antigen, and silver-staining nucleolar organizer regions) and of p53 tumor protein in gestational trophoblastic disease. Am J Obstet Gynecol. 2001;184:567–74.

    Article  CAS  PubMed  Google Scholar 

  28. Yang XG, Bao YL, Huang YX, Sun LG, Zhang YW, Yu CL, et al. 6-[(1-naphthylmethyl)sulfanyl]-9H-purine induces G2/M phase arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Eur J Pharmacol. 2012;695:27–33.

    Article  CAS  PubMed  Google Scholar 

  29. Chen T, Wong YS. Selenocystine induces S-phase arrest and apoptosis in human breast adenocarcinoma MCF-7 cells by modulating ERK and Akt phosphorylation. J Agric Food Chem. 2008;56:10574–81.

    Article  CAS  PubMed  Google Scholar 

  30. Norbury C, Blow J, Nurse P. Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates. EMBO J. 1991;10:3321–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Li XL, Andersen JB, Ezelle HJ, Wilson GM, Hassel BA. Post-transcriptional regulation of RNase-L expression is mediated by the 3′-untranslated region of its mRNA. J Biol Chem. 2007;282:7950–60.

    Article  CAS  PubMed  Google Scholar 

  32. Gao W, Xiao F, Wang X, Chen T. Artemisinin induces A549 cell apoptosis dominantly via a reactive oxygen species-mediated amplification activation loop among caspase-9, −8 and −3. Apoptosis. 2013;18:1201–13.

    Article  CAS  PubMed  Google Scholar 

  33. Mondal A, Chatterji U. Artemisinin represses telomerase subunits and induces apoptosis in HPV-39 infected human cervical cancer cells. J Cell Biochem. 2015.

  34. Liu F, Cao Q, Liu N, Li C, You C, Liu C, et al. Overexpression of testes-specific protease 50 (TSP50) predicts poor prognosis in patients with gastric cancer. Gastroenterol Res Pract. 2014;2014:498246.

    PubMed  PubMed Central  Google Scholar 

  35. Zheng L, Xie G, Duan G, Yan X, Li Q. High expression of testes-specific protease 50 is associated with poor prognosis in colorectal carcinoma. PLoS One. 2011;6, e22203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu YL, Wan Y, Jin XJ, OuYang BQ, Bai T, Zhao YQ, et al. 25-OCH3-PPD induces the apoptosis of activated t-HSC/Cl-6 cells via c-FLIP-mediated NF-kappaB activation. Chem Biol Interact. 2011;194:106–12.

    Article  CAS  PubMed  Google Scholar 

  37. Eichhorn T, Schloissnig S, Hahn B, Wendler A, Mertens R, Lehmann WD, et al. Bioinformatic and experimental fishing for artemisinin-interacting proteins from human nasopharyngeal cancer cells. Mol Biosyst. 2012;8:1311–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Yan Li and Qiuyue Gu for their assistance in this study. This work was supported by the grants from The National Natural Science Foundation of China (Grant Nos. 81272919, 81272242 and 81502284).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongli Bao or Yuxin Li.

Ethics declarations

Conflicts of interest

None

Ethical approval

This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The Chinese Academy of Sciences Animal Care and Use Committee gave approval for the animal experiments. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Zhao, Y., Wang, Y. et al. 25-methoxyl-dammarane-3β, 12β, 20-triol and artemisinin synergistically inhibit MDA-MB-231 cell proliferation through downregulation of testes-specific protease 50 (TSP50) expression. Tumor Biol. 37, 11805–11813 (2016). https://doi.org/10.1007/s13277-016-5037-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5037-7

Keywords

Navigation