Skip to main content

Advertisement

Log in

Correlation of TGF-β1 and oxidative stress in the blood of patients with melanoma: a clue to understanding melanoma progression?

  • Original Article
  • Published:
Tumor Biology

Abstract

TGF-β1 and oxidative stress are involved in cancer progression, but in melanoma, their role is still controversial. Our aim was to correlate plasma TGF-β1 levels and systemic oxidative stress biomarkers in patients with melanoma, with or without disease metastasis, to understand their participation in melanoma progression. Thirty patients were recruited for melanoma surveillance, together with 30 healthy volunteers. Patients were divided into two groups: Non-metastasis, comprising patients with tumor removal and no metastatic episode for 3 years; and Metastasis, comprising patients with a metastatic episode. The plasmatic cytokines TGF-β1, IL-1 β, and TNF-α were analyzed by ELISA. For oxidative stress, the following assays were performed: malondialdehyde (MDA), advanced oxidation protein products (AOPP) levels, total radical-trapping antioxidant parameter (TRAP) and thiol in plasma, and lipid peroxidation, SOD and catalase activity and GSH in erythrocytes. Patients with a metastatic episode had less circulating TGF-β1 and increased TRAP, thiol, AOPP and lipid peroxidation levels. MDA was increased in both melanoma groups, while catalase, GSH, and IL-1β was decreased in Non-metastasis patients. Significant negative correlations were observed between TGF-β1 levels and systemic MDA, and TGF-β1 levels and systemic AOPP, while a positive correlation was observed between TGF-β1 levels and erythrocyte GSH. Lower levels of TGF-β1 were related to increased oxidative stress in Metastasis patients, reinforcing new evidence that in melanoma TGF-β1 acts as a tumor suppressor, inhibiting tumor relapse. These findings provide new knowledge concerning this cancer pathophysiology, extending the possibilities of investigating new therapies based on this evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lebrun JJ. The dual role of TGF-beta in human cancer: from tumor suppression to cancer metastasis. ISRN Mol Biol. 2012. doi:10.5402/2012/381428.

    PubMed  PubMed Central  Google Scholar 

  2. Humbert L, Lebrun JJ. TGF-beta inhibits human cutaneous melanoma cell migration and invasion through regulation of the plasminogen activator system. Cell Signal. 2013. doi:10.1016/j.cellsig.2012.10.011.

    PubMed  Google Scholar 

  3. Moustakas A. TGF-beta targets PAX3 to control melanocyte differentiation. Dev Cell. 2008. doi:10.1016/j.devcel.2008.11.009.

    PubMed  Google Scholar 

  4. Schriek G, Oppitz M, Busch C, Just L, Drews U. Human SK-Mel 28 melanoma cells resume neural crest cell migration after transplantation into the chick embryo. Melanoma Res. 2005;15:225–34.

    Article  PubMed  Google Scholar 

  5. Perrot CY, Javelaud D, Mauviel A. Insights into the transforming growth factor-β signaling pathway in cutaneous melanoma. Ann Dermatol. 2013. doi:10.5021/ad.2013.25.2.135.

    PubMed  PubMed Central  Google Scholar 

  6. Lo RS, Witte ON. Transforming growth factor-beta activation promotes genetic context-dependent invasion of immortalized melanocytes. Cancer Res. 2008;68:4248–57.

    Article  CAS  PubMed  Google Scholar 

  7. Javelaud D, Alexaki VI, Mauviel A. Transforming growth factor-β in cutaneous melanoma. Pigment Cell Melanoma Res. 2008;21:123–32.

    Article  CAS  PubMed  Google Scholar 

  8. Krasagakis K, Garbe C, Schrier PI, Orfanos CE. Paracrine and autocrine regulation of human melanocyte and melanoma cell growth by transforming growth factor beta in vitro. Anticancer Res. 1994;14:2565–71.

    CAS  PubMed  Google Scholar 

  9. Krasagakis K, Thölke D, Farthmann B, Eberle J, Mansmann U, Orfanos CE. Elevated plasma levels of transforming growth factor (TGF)-beta 1 and TGF-beta 2 in patients with disseminated malignant melanoma. Br J Cancer. 1998;77:1492–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ramont SP, Hornebeck W, Maquart FX, Monboisse JC. Transforming growth factor-β1 inhibits tumor growth in a mouse melanoma model by down-regulating the plasminogen activation system. Exp Cell Res. 2003;291:1–10.

    Article  CAS  PubMed  Google Scholar 

  11. Malaponte G, Zacchia A, Bevelacqua Y, Marconi A, Perrotta R, Mazzarino MC, et al. Co-regulated expression of matrix metalloproteinase-2 and transforming growth factor-beta in melanoma development and progression. Oncol Rep. 2010;24:81–7.

    Article  CAS  PubMed  Google Scholar 

  12. Tas F, Karabulut S, Yasasever CT, Duranyildiz D. Serum transforming growth factor-beta 1 (TGF-β1) levels have diagnostic, predictive, and possible prognostic roles in patients with melanoma. Tumour Biol. 2014. doi:10.1007/s13277-014-1984-z.

    Google Scholar 

  13. Meyer M, Pahl HL, Baeuerle PA. Regulation of the transcription factors NF-κB and AP-1 by redox changes. Chem Biol Interact. 1994;91:91–100.

    Article  CAS  PubMed  Google Scholar 

  14. Meyskens Jr FL, McNulty SE, Buckmeier JA, Tohidian NB, Spillane TJ, Kahlon RS, et al. Aberrant redox regulation in human metastatic melanoma cells compared to normal melanocytes. Free Radic Biol Med. 2001;31:799–808.

    Article  CAS  PubMed  Google Scholar 

  15. Sander CS, Hamm F, Elsner P, Thiele JJ. Oxidative stress in malignant melanoma and non-melanoma skin cancer. Br J Dermatol. 2003;148:913–22.

    Article  CAS  PubMed  Google Scholar 

  16. Gadjeva V, Dimov A, Georgieva N. Influence of therapy on the antioxidant status in patients with melanoma. J Clin Pharm Ther. 2008. doi:10.1111/j.1365-2710.2008.00909.x.

    PubMed  Google Scholar 

  17. Picardo M, Grammatico P, Roccella F, Roccella M, Grandinetti M, Del Porto G, et al. Imbalance in the antioxidant pool in melanoma cells and normal melanocytes from patients with melanoma. J Investig Dermatol. 1996;107:322–6.

    Article  CAS  PubMed  Google Scholar 

  18. Barcellos-Hoff MH, Dix TA. Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol. 1996;10:1077–83.

    CAS  PubMed  Google Scholar 

  19. Bauer G. Elimination of transformed cells by normal cells: a novel concept for the control of carcinogenesis. Histol Histopathol. 1996;11:237–55.

    CAS  PubMed  Google Scholar 

  20. Häufel T, Dormann S, Hanusch J, Schwieger A, Bauer G. Three distinct roles for TGF-beta during intercellular induction of apoptosis: a review. Anticancer Res. 1999;19:105–11.

    PubMed  Google Scholar 

  21. De Bleser PJ, Xu G, Rombouts K, Rogiers V, Geerts A. Glutathione levels discriminate between oxidative stress and transforming growth factor-beta signaling in activated rat hepatic stellate cells. J Biol Chem. 1999;274:33881–7.

    Article  PubMed  Google Scholar 

  22. Fitzpatrick TB. The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol. 1988;124:869–71.

    Article  CAS  PubMed  Google Scholar 

  23. (INCA), I. N. D. C. Estimativas da incidência e mortalidade por câncer no Brasil. Rio de Janeiro: Ministério da Saúde; 2014.

    Google Scholar 

  24. Lawanga SK, Lemeshow S. Sample size determination in health studies. World Health Organization – Geneva, 1991. ISBN 92 4 154405.

  25. Victorino VJ, Panis C, Campos FC, Cayres RC, Colado-Simão AN, Oliveira SR, et al. Decreased oxidant profile and increased antioxidant capacity in naturally postmenopausal women. Age (Dordr). 2013;35:1411–21. doi:10.1007/s11357-012-9431-9.

    Article  CAS  Google Scholar 

  26. Descamps-Latscha B, Witko-Sarsat V, Nguyen-Khoa T, Nguyen AT, Gausson V, Mothu N, et al. Early prediction of IgA nephropathy progression: proteinuria and AOPP are strong prognostic markers. Kidney Int. 2004;66:1606–12.

    Article  CAS  PubMed  Google Scholar 

  27. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–72.

    CAS  PubMed  Google Scholar 

  28. Miller G. Protein determination of large numbers of samples. Anal Chem. 1959;31:964.

    Article  CAS  Google Scholar 

  29. Repetto M, Reides C, Gomez Carretero ML, Costa M, Griemberg G, Llesuy S. Oxidative stress in blood of HIV infected patients. Clin Chim Acta. 1996;255:107–17.

    Article  CAS  PubMed  Google Scholar 

  30. Hu ML. Measurement of protein thiol groups and GSH in plasma. In: Sies H, Abelson J, Simon M, editors. Methods in enzymoly 233. San Diego: Academic; 2004. p. 380–5.

    Google Scholar 

  31. Panis C, Herrera AC, Victorino VJ, Campos FC, Freitas LF, De Rossi T, et al. Oxidative stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res Treat. 2012;133:89–97.

    Article  CAS  PubMed  Google Scholar 

  32. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47:469–74.

    Article  CAS  PubMed  Google Scholar 

  33. Aebi H. Catalase in vitro. In: Sies H, Kaplan N, Colowick N, editors. Methods in enzymoly 105. San Diego: Academic; 1984. p. 121–1266.

    Google Scholar 

  34. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969;27:502–22.

    Article  CAS  PubMed  Google Scholar 

  35. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman J, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363:809–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rizos H, Menzies AM, Pupo GM, Carlino MS, Fung C, Hyman J, et al. BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clin Cancer Res. 2014;20:1965–77.

    Article  CAS  PubMed  Google Scholar 

  37. Kim CJ, Reintgen DS, Balch CM. The new melanoma staging system. Cancer Control. 2002;9:9–15.

    PubMed  Google Scholar 

  38. Schmid P, Itin P, Rufli T. In situ analysis of transforming growth factor-beta s (TGF-beta 1, TGF-beta 2, TGF-beta 3), and TGF-beta type II receptor expression in malignant melanoma. Carcinogenesis. 1995;16:1499–503.

    Article  CAS  PubMed  Google Scholar 

  39. Van Belle P, Rodeck U, Nuamah I, Halpern AC, Elder DE. Melanoma-associated expression of transforming growth factor-beta isoforms. Am J Pathol. 1996;148:1887–94.

    PubMed  PubMed Central  Google Scholar 

  40. Hassona Y, Cirillo N, Lim KP, Herman A, Mellone M, Thomas GJ, et al. Progression of genotype-specific oral cancer leads to senescence of cancer-associated fibroblasts and is mediated by oxidative stress and TGF-β. Carcinogenesis. 2013;34(6):1286–95.

    Article  CAS  PubMed  Google Scholar 

  41. Bounaama A, Djerdjouri B, Laroche-Clary A, Le Morvan V, Robert J. Short curcumin treatment modulates oxidative stress, arginase activity, aberrant crypt foci, and TGF-β1 and HES-1 transcripts in 1,2-dimethylhydrazine-colon carcinogenesis in mice. Toxicology. 2012;302(2–3):308–17.

    Article  CAS  PubMed  Google Scholar 

  42. Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell. 1999;96:319–28.

    Article  CAS  PubMed  Google Scholar 

  43. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 1992;359:693–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Panis C, Herrera AC, Victorino VJ, Aranome AM, Cecchini R. Screening of circulating TGF-β levels and its clinicopathological significance in human breast cancer. Anticancer Res. 2013;33:737–42.

    CAS  PubMed  Google Scholar 

  45. Cui Y, Robertson J, Maharaj S, Waldhauser L, Niu J, Wang J, et al. Oxidative stress contributes to the induction and persistence of TGF-β1 induced pulmonary fibrosis. Int J Biochem Cell Biol. 2011;43:1122–33.

    Article  CAS  PubMed  Google Scholar 

  46. Halliwel B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. Oxford: Oxford University Press; 2007.

    Google Scholar 

  47. Korkmaz GG, Altınoglu E, Civelek S, Sozer V, Erdenen F, Tabak O, et al. The association of oxidative stress markers with conventional risk factors in the metabolic syndrome. Metabolism. 2013;62:828–35.

    Article  CAS  PubMed  Google Scholar 

  48. Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol. 1998;16:137–61.

    Article  CAS  PubMed  Google Scholar 

  49. Suzuki Y, Ohno S, Okuyama R, Aruga A, Yamamoto M, Miura S, et al. Determination of chronic inflammatory states in cancer patients using assay of reactive oxygen species production by neutrophils. Anticancer Res. 2012;32:565–70.

    CAS  PubMed  Google Scholar 

  50. Azorin I, Bella MC, Iborra FJ, Fornas E, Renau-Piqueras J. Effect of tert-butyl hydroperoxide addition on spontaneous chemiluminescence in brain. Free Radic Biol Med. 1995;19:795–803.

    Article  CAS  PubMed  Google Scholar 

  51. Halliwell B. Oxidative stress and cancer: have we moved forward? Biochem J. 2007;401:1–11.

    Article  CAS  PubMed  Google Scholar 

  52. Bernardes SS, Souza-Neto FP, Ramalho LN, Derossi DR, Guarnier FA, Silva CF, et al. Systemic oxidative profile after tumor removal and the tumor microenvironment in melanoma patients. Cancer Lett. 2015. doi:10.1016/j.canlet.2015.03.007.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to J.A. Vargas and P. S. R. D. Filho for their excellent technical assistance and E. C. B. Carmelo of the Department of Clinical Research of the Londrina Cancer Hospital for her important assistance in patient recruitment and interview. The authors would also like to thank physicians M. A. Buges and C. Z. Campos for allowing their patients to participate in the study. The authors also thank the Araucária Foundation for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra L. Cecchini.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos Bernardes, S., de Souza-Neto, F.P., Pasqual Melo, G. et al. Correlation of TGF-β1 and oxidative stress in the blood of patients with melanoma: a clue to understanding melanoma progression?. Tumor Biol. 37, 10753–10761 (2016). https://doi.org/10.1007/s13277-016-4967-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4967-4

Keywords

Navigation