Skip to main content

Advertisement

Log in

Kaempferol inhibits cell proliferation and glycolysis in esophagus squamous cell carcinoma via targeting EGFR signaling pathway

  • Original Article
  • Published:
Tumor Biology

Abstract

Antitumor activity of kaempferol has been studied in various tumor types, but its potency in esophagus squamous cell carcinoma is rarely known. Here, we reported the activity of kaempferol against esophagus squamous cell carcinoma as well as its antitumor mechanisms. Results of cell proliferation and colony formation assay showed that kaempferol substantially inhibited tumor cell proliferation and clone formation in vitro. Flow cytometric analysis demonstrated that tumor cells were induced G0/G1 phase arrest after kaempferol treatment, and the expression of protein involved in cell cycle regulation was dramatically changed. Except the potency on cell proliferation, we also discovered that kaempferol had a significant inhibitory effect against tumor glycolysis. With the downregulation of hexokinase-2, glucose uptake and lactate production in tumor cells were dramatically declined. Mechanism studies revealed kaempferol had a direct effect on epidermal growth factor receptor (EGFR) activity, and along with the inhibition of EGFR, its downstream signaling pathways were also markedly suppressed. Further investigations found that exogenous overexpression of EGFR in tumor cells substantially attenuated glycolysis suppression induced by kaempferol, which implied that EGFR also played an important role in kaempferol-mediated glycolysis inhibition. Finally, the antitumor activity of kaempferol was validated in xenograft model and kaempferol prominently restrained tumor growth in vivo. Meanwhile, dramatic decrease of EGFR activity and hexokinase-2 expression were observed in kaempferol-treated tumor tissue, which confirmed these findings in vitro. Briefly, these studies suggested that kaempferol, or its analogues, may serve as effective candidates for esophagus squamous cell carcinoma management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Domper Arnal MJ, Ferrandez Arenas A, Lanas Arbeloa A. Esophageal cancer: risk factors, screening and endoscopic treatment in western and eastern countries. World J Gastroenterol. 2015;21:7933–43.

    PubMed  PubMed Central  Google Scholar 

  2. Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med. 2003;349:2241–52.

    Article  CAS  PubMed  Google Scholar 

  3. Somerset SM, Johannot L. Dietary flavonoid sources in Australian adults. Nutr Cancer. 2008;60:442–9.

    Article  CAS  PubMed  Google Scholar 

  4. Seifried HE, Anderson DE, Fisher EI, Milner JA. A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem. 2007;18:567–79.

    Article  CAS  PubMed  Google Scholar 

  5. Azevedo C, Correia-Branco A, Araujo JR, Guimaraes JT, Keating E, Martel F. The chemopreventive effect of the dietary compound kaempferol on the mcf-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake. Nutr Cancer. 2015;67:504–13.

    Article  CAS  PubMed  Google Scholar 

  6. Diantini A, Subarnas A, Lestari K, Halimah E, Susilawati Y, Supriyatna, et al. Kaempferol-3-O-rhamnoside isolated from the leaves of Schima wallichii Korth. inhibits MCF-7 breast cancer cell proliferation through activation of the caspase cascade pathway. Oncol Lett. 2012;3:1069–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang WW, Tsai SC, Peng SF, Lin MW, Chiang JH, Chiu YJ, et al. Kaempferol induces autophagy through ampk and akt signaling molecules and causes g2/m arrest via downregulation of cdk1/cyclin b in sk-hep-1 human hepatic cancer cells. Int J Oncol. 2013;42:2069–77.

    CAS  PubMed  Google Scholar 

  8. Mylonis I, Lakka A, Tsakalof A, Simos G. The dietary flavonoid kaempferol effectively inhibits hif-1 activity and hepatoma cancer cell viability under hypoxic conditions. Biochem Biophys Res Commun. 2010;398:74–8.

    Article  CAS  PubMed  Google Scholar 

  9. Cho HJ, Park JH. Kaempferol induces cell cycle arrest in ht-29 human colon cancer cells. J Cancer Prev. 2013;18:257–63.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee HS, Cho HJ, Yu R, Lee KW, Chun HS, Park JH. Mechanisms underlying apoptosis-inducing effects of kaempferol in ht-29 human colon cancer cells. Int J Mol Sci. 2014;15:2722–37.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Luo H, Rankin GO, Liu L, Daddysman MK, Jiang BH, Chen YC. Kaempferol inhibits angiogenesis and vegf expression through both hif dependent and independent pathways in human ovarian cancer cells. Nutr Cancer. 2009;61:554–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Luo H, Rankin GO, Li Z, Depriest L, Chen YC. Kaempferol induces apoptosis in ovarian cancer cells through activating p53 in the intrinsic pathway. Food Chem. 2011;128:513–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Halimah E, Diantini A, Destiani DP, Pradipta IS, Sastramihardja HS, Lestari K, et al. Induction of caspase cascade pathway by kaempferol-3-rhamnoside in lncap prostate cancer cell lines. Biomed Rep. 2015;3:115–7.

    PubMed  Google Scholar 

  14. Wu LY, Lu HF, Chou YC, Shih YL, Bau DT, Chen JC, et al. Kaempferol induces DNA damage and inhibits DNA repair associated protein expressions in human promyelocytic leukemia hl-60 cells. Am J Chin Med. 2015;43:365–82.

    Article  CAS  PubMed  Google Scholar 

  15. Song W, Dang Q, Xu D, Chen Y, Zhu G, Wu K, et al. Kaempferol induces cell cycle arrest and apoptosis in renal cell carcinoma through egfr/p38 signaling. Oncol Rep. 2014;31:1350–6.

    CAS  PubMed  Google Scholar 

  16. Huang WW, Chiu YJ, Fan MJ, Lu HF, Yeh HF, Li KH, et al. Kaempferol induced apoptosis via endoplasmic reticulum stress and mitochondria-dependent pathway in human osteosarcoma u-2 os cells. Mol Nutr Food Res. 2010;54:1585–95.

    Article  CAS  PubMed  Google Scholar 

  17. Filomeni G, Desideri E, Cardaci S, Graziani I, Piccirillo S, Rotilio G, et al. Carcinoma cells activate amp-activated protein kinase-dependent autophagy as survival response to kaempferol-mediated energetic impairment. Autophagy. 2010;6:202–16.

    Article  CAS  PubMed  Google Scholar 

  18. Luo H, Rankin GO, Juliano N, Jiang BH, Chen YC. Kaempferol inhibits vegf expression and in vitro angiogenesis through a novel erk-nfkappab-cmyc-p21 pathway. Food Chem. 2012;130:321–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer. 2013;12:152.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wilson JE. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol. 2003;206:2049–57.

    Article  CAS  PubMed  Google Scholar 

  21. Mathupala SP, Rempel A, Pedersen PL. Glucose catabolism in cancer cells. Isolation, sequence, and activity of the promoter for type II hexokinase. J Biol Chem. 1995;270:16918–25.

    Article  CAS  PubMed  Google Scholar 

  22. Suh DH, Kim MA, Kim H, Kim MK, Kim HS, Chung HH, et al. Association of overexpression of hexokinase II with chemoresistance in epithelial ovarian cancer. Clin Exp Med. 2014;14:345–53.

    Article  CAS  PubMed  Google Scholar 

  23. Rho M, Kim J, Jee CD, Lee YM, Lee HE, Kim MA, et al. Expression of type 2 hexokinase and mitochondria-related genes in gastric carcinoma tissues and cell lines. Anticancer Res. 2007;27:251–8.

    CAS  PubMed  Google Scholar 

  24. Palmieri D, Fitzgerald D, Shreeve SM, Hua E, Bronder JL, Weil RJ, et al. Analyses of resected human brain metastases of breast cancer reveal the association between up-regulation of hexokinase 2 and poor prognosis. Mol Cancer Res: MCR. 2009;7:1438–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fonteyne P, Casneuf V, Pauwels P, Van Damme N, Peeters M, Dierckx R, et al. Expression of hexokinases and glucose transporters in treated and untreated oesophageal adenocarcinoma. Histol Histopathol. 2009;24:971–7.

    CAS  PubMed  Google Scholar 

  26. Peng SY, Lai PL, Pan HW, Hsiao LP, Hsu HC. Aberrant expression of the glycolytic enzymes aldolase b and type II hexokinase in hepatocellular carcinoma are predictive markers for advanced stage, early recurrence and poor prognosis. Oncol Rep. 2008;19:1045–53.

    CAS  PubMed  Google Scholar 

  27. Ogawa H, Nagano H, Konno M, Eguchi H, Koseki J, Kawamoto K, et al. The combination of the expression of hexokinase 2 and pyruvate kinase m2 is a prognostic marker in patients with pancreatic cancer. Mol Clin Oncol. 2015;3:563–71.

    PubMed  PubMed Central  Google Scholar 

  28. Hamabe A, Yamamoto H, Konno M, Uemura M, Nishimura J, Hata T, et al. Combined evaluation of hexokinase 2 and phosphorylated pyruvate dehydrogenase-e1alpha in invasive front lesions of colorectal tumors predicts cancer metabolism and patient prognosis. Cancer Sci. 2014;105:1100–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang J, Yu JM, Jing SW, Guo Y, Wu YJ, Li N, et al. Relationship between egfr over-expression and clinicopathologic characteristics in squamous cell carcinoma of the esophagus: a meta-analysis. Asian Pac J Cancer Prev: APJCP. 2014;15:5889–93.

    Article  PubMed  Google Scholar 

  30. Aichler M, Motschmann M, Jutting U, Luber B, Becker K, Ott K, et al. Epidermal growth factor receptor (egfr) is an independent adverse prognostic factor in esophageal adenocarcinoma patients treated with cisplatin-based neoadjuvant chemotherapy. Oncotarget. 2014;5:6620–32.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gates MA, Tworoger SS, Hecht JL, De Vivo I, Rosner B, Hankinson SE. A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. Int J Cancer J Int Cancer. 2007;121:2225–32.

    Article  CAS  Google Scholar 

  32. Nothlings U, Murphy SP, Wilkens LR, Henderson BE, Kolonel LN. Flavonols and pancreatic cancer risk: the multiethnic cohort study. Am J Epidemiol. 2007;166:924–31.

    Article  PubMed  Google Scholar 

  33. Garcia-Closas R, Gonzalez CA, Agudo A, Riboli E. Intake of specific carotenoids and flavonoids and the risk of gastric cancer in Spain. Cancer Causes Control: CCC. 1999;10:71–5.

    Article  CAS  PubMed  Google Scholar 

  34. Bobe G, Sansbury LB, Albert PS, Cross AJ, Kahle L, Ashby J, et al. Dietary flavonoids and colorectal adenoma recurrence in the polyp prevention trial. Cancer Epidemiol, Biomarkers Prev: Publ Am Assoc Cancer Res, Cosponsored Am Soc Prev Oncol. 2008;17:1344–53.

    Article  CAS  Google Scholar 

  35. Zhang Q, Zhao XH, Wang ZJ. Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (kyse-510) by induction of g2/m arrest and apoptosis. Toxicol In Vitro: Int J Published Assoc BIBRA. 2009;23:797–807.

    Article  CAS  Google Scholar 

  36. Pastorino JG, Shulga N, Hoek JB. Mitochondrial binding of hexokinase II inhibits bax-induced cytochrome c release and apoptosis. J Biol Chem. 2002;277:7610–8.

    Article  CAS  PubMed  Google Scholar 

  37. Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, et al. Hexokinase-mitochondria interaction mediated by akt is required to inhibit apoptosis in the presence or absence of bax and bak. Mol Cell. 2004;16:819–30.

    Article  CAS  PubMed  Google Scholar 

  38. Krasnov GS, Dmitriev AA, Lakunina VA, Kirpiy AA, Kudryavtseva AV. Targeting vdac-bound hexokinase II: a promising approach for concomitant anti-cancer therapy. Expert Opin Ther Targets. 2013;17:1221–33.

    Article  CAS  PubMed  Google Scholar 

  39. Xie F, Su M, Qiu W, Zhang M, Guo Z, Su B, et al. Kaempferol promotes apoptosis in human bladder cancer cells by inducing the tumor suppressor, pten. Int J Mol Sci. 2013;14:21215–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Law AA, Collie-Duguid ES, Smith TA. Influence of resistance to 5-fluorouracil and tomudex on [18f]fdg incorporation, glucose transport and hexokinase activity. Int J Oncol. 2012;41:378–82.

    CAS  PubMed  Google Scholar 

  41. Jiang JX, Gao S, Pan YZ, Yu C, Sun CY. Overexpression of microrna-125b sensitizes human hepatocellular carcinoma cells to 5-fluorouracil through inhibition of glycolysis by targeting hexokinase II. Mol Med Rep. 2014;10:995–1002.

    CAS  PubMed  Google Scholar 

  42. Peng Q, Zhou J, Zhou Q, Pan F, Zhong D, Liang H. Silencing hexokinase II gene sensitizes human colon cancer cells to 5-fluorouracil. Hepato-Gastroenterology. 2009;56:355–60.

    CAS  PubMed  Google Scholar 

  43. Makinoshima H, Takita M, Matsumoto S, Yagishita A, Owada S, Esumi H, et al. Epidermal growth factor receptor (egfr) signaling regulates global metabolic pathways in egfr-mutated lung adenocarcinoma. J Biol Chem. 2014;289:20813–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. De Rosa V, Iommelli F, Monti M, Fonti R, Votta G, Stoppelli MP, et al. Reversal of Warburg effect and reactivation of oxidative phosphorylation by differential inhibition of egfr signaling pathways in non-small cell lung cancer. Clin Cancer Res: Off J Am Assoc Cancer Res. 2015;21:5110–20.

    Article  Google Scholar 

  45. Chen GQ, Tang CF, Shi XK, Lin CY, Fatima S, Pan XH, et al. Halofuginone inhibits colorectal cancer growth through suppression of akt/mtorc1 signaling and glucose metabolism. Oncotarget. 2015;6:24148–62.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhuo B, Li Y, Li Z, Qin H, Sun Q, Zhang F, et al. Pi3k/akt signaling mediated hexokinase-2 expression inhibits cell apoptosis and promotes tumor growth in pediatric osteosarcoma. Biochem Biophys Res Commun. 2015;464:401–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (81301829) and the Key Project of Science and Technology Commission of Shanghai Municipality (15411951700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Fang.

Ethics declarations

Conflicts of interest

None

Additional information

Shihua Yao and Xiaowei Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Wang, X., Li, C. et al. Kaempferol inhibits cell proliferation and glycolysis in esophagus squamous cell carcinoma via targeting EGFR signaling pathway. Tumor Biol. 37, 10247–10256 (2016). https://doi.org/10.1007/s13277-016-4912-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4912-6

Keywords

Navigation