Skip to main content

Advertisement

Log in

Differential blood-based diagnosis between benign prostatic hyperplasia and prostate cancer: miRNA as source for biomarkers independent of PSA level, Gleason score, or TNM status

  • Original Article
  • Published:
Tumor Biology

Abstract

Since the benefit of prostate-specific antigen (PSA) screening remains controversial, new non-invasive biomarkers for prostate carcinoma (PCa) are still required. There is evidence that microRNAs (miRNAs) in whole peripheral blood can separate patients with localized prostate cancer from healthy individuals. However, the potential of blood-based miRNAs for the differential diagnosis of PCa and benign prostatic hyperplasia (BPH) has not been tested. We compared the miRNome from blood of PCa and BPH patients and further investigated the influence of the tumor volume, tumor-node-metastasis (TNM) classification, Gleason score, pretreatment risk status, and the pretreatment PSA value on the miRNA pattern. By microarray approach, we identified seven miRNAs that were significantly deregulated in PCa patients compared to BPH patients. Using quantitative real time PCR (qRT-PCR), we confirmed downregulation of hsa-miR-221* (now hsa-miR-221-5p) and hsa-miR-708* (now hsa-miR-708-3p) in PCa compared to BPH. Clinical parameters like PSA level, Gleason score, or TNM status seem to have only limited impact on the overall abundance of miRNAs in patients’ blood, suggesting a no influence of these factors on the expression of deregulated miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403. doi:10.1016/j.ejca.2012.12.027.

    Article  CAS  PubMed  Google Scholar 

  2. Kuriyama M, Wang MC, Papsidero LD, Killian CS, Shimano T, Valenzuela L, et al. Quantitation of prostate-specific antigen in serum by a sensitive enzyme immunoassay. Cancer Res. 1980;40(12):4658–62.

    CAS  PubMed  Google Scholar 

  3. Velonas VM, Woo HH, Remedios CG, Assinder SJ. Current status of biomarkers for prostate cancer. Int J Mol Sci. 2013;14(6):11034–60. doi:10.3390/ijms140611034.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pinsky PF, Kramer BS, Crawford ED, Grubb RL, Urban DA, Andriole GL, et al. Prostate volume and prostate-specific antigen levels in men enrolled in a large screening trial. Urology. 2006;68(2):352–6. doi:10.1016/j.urology.2006.02.026.

    Article  PubMed  Google Scholar 

  5. Armitage TG, Cooper EH, Newling DW, Robinson MR, Appleyard I. The value of the measurement of serum prostate specific antigen in patients with benign prostatic hyperplasia and untreated prostate cancer. Br J Urol. 1988;62(6):584–9.

    Article  CAS  PubMed  Google Scholar 

  6. Tornblom M, Norming U, Adolfsson J, Becker C, Abrahamsson PA, Lilja H, et al. Diagnostic value of percent free prostate-specific antigen: retrospective analysis of a population-based screening study with emphasis on men with PSA levels less than 3.0 ng/mL. Urology. 1999;53(5):945–50.

    Article  CAS  PubMed  Google Scholar 

  7. Bangma CH, Roemeling S, Schroder FH. Overdiagnosis and overtreatment of early detected prostate cancer. World J Urol. 2007;25(1):3–9. doi:10.1007/s00345-007-0145-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bokhorst LP, Bangma CH, van Leenders GJ, Lous JJ, Moss SM, Schroder FH, et al. Prostate-specific antigen-based prostate cancer screening: reduction of prostate cancer mortality after correction for nonattendance and contamination in the Rotterdam section of the European randomized study of screening for prostate cancer. Eur Urol. 2014;65(2):329–36. doi:10.1016/j.eururo.2013.08.005.

    Article  PubMed  Google Scholar 

  9. Pokorny MR, de Rooij M, Duncan E, Schroder FH, Parkinson R, Barentsz JO, et al. Prospective study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent MR-guided biopsy in men without previous prostate biopsies. Eur Urol. 2014;66(1):22–9. doi:10.1016/j.eururo.2014.03.002.

    Article  PubMed  Google Scholar 

  10. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005;310(5748):644–8. doi:10.1126/science.1117679.

    Article  CAS  PubMed  Google Scholar 

  11. Bussemakers MJ, van Bokhoven A, Verhaegh GW, Smit FP, Karthaus HF, Schalken JA, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999;59(23):5975–9.

    CAS  PubMed  Google Scholar 

  12. Edwards SM, Evans DG, Hope Q, Norman AR, Barbachano Y, Bullock S, et al. Prostate cancer in BRCA2 germline mutation carriers is associated with poorer prognosis. Br J Cancer. 2010;103(6):918–24. doi:10.1038/sj.bjc.6605822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hart M, Nolte E, Wach S, Szczyrba J, Taubert H, Rau TT, et al. Comparative microRNA profiling of prostate carcinomas with increasing tumor stage by deep sequencing. Mol Cancer Res: MCR. 2014;12(2):250–63. doi:10.1158/1541-7786.MCR-13-0230.

    Article  CAS  PubMed  Google Scholar 

  14. Selth LA, Townley S, Gillis JL, Ochnik AM, Murti K, Macfarlane RJ, et al. Discovery of circulating microRNAs associated with human prostate cancer using a mouse model of disease. Int J Cancer J Int Du Cancer. 2012;131(3):652–61. doi:10.1002/ijc.26405.

    Article  CAS  Google Scholar 

  15. Medina-Villaamil V, Martinez-Breijo S, Portela-Pereira P, Quindos-Varela M, Santamarina-Cainzos I, Anton-Aparicio LM, et al. Circulating microRNAs in blood of patients with prostate cancer. Actas Urol Esp. 2014. doi:10.1016/j.acuro.2014.02.008.

    PubMed  Google Scholar 

  16. Sita-Lumsden A, Dart DA, Waxman J, Bevan CL. Circulating microRNAs as potential new biomarkers for prostate cancer. Br J Cancer. 2013;108(10):1925–30. doi:10.1038/bjc.2013.192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, et al. A uniform system for microRNA annotation. RNA. 2003;9(3):277–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Engels BM, Hutvagner G. Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene. 2006;25(46):6163–9. doi:10.1038/sj.onc.1209909.

    Article  CAS  PubMed  Google Scholar 

  19. Moretti F, Thermann R, Hentze MW. Mechanism of translational regulation by miR-2 from sites in the 5′ untranslated region or the open reading frame. RNA. 2010;16(12):2493–502. doi:10.1261/rna.2384610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schaefer A, Jung M, Kristiansen G, Lein M, Schrader M, Miller K, et al. MicroRNAs and cancer: current state and future perspectives in urologic oncology. Urol Oncol. 2010;28(1):4–13. doi:10.1016/j.urolonc.2008.10.021.

    Article  CAS  PubMed  Google Scholar 

  21. Coppola V, De Maria R, Bonci D. MicroRNAs and prostate cancer. Endocr-Relat Cancer. 2010;17(1):F1–17. doi:10.1677/ERC-09-0172.

    Article  CAS  PubMed  Google Scholar 

  22. Maugeri-Sacca M, Coppola V, Bonci D, De Maria R. MicroRNAs and prostate cancer: from preclinical research to translational oncology. Cancer J. 2012;18(3):253–61. doi:10.1097/PPO.0b013e318258b5b6.

    Article  CAS  PubMed  Google Scholar 

  23. Leidinger P, Backes C, Blatt M, Keller A, Huwer H, Lepper P, et al. The blood-borne miRNA signature of lung cancer patients is independent of histology but influenced by metastases. Mol Cancer. 2014;13(1):202. doi:10.1186/1476-4598-13-202.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schmitt J, Backes C, Nourkami-Tutdibi N, Leidinger P, Deutscher S, Beier M, et al. Treatment-independent miRNA signature in blood of Wilms tumor patients. BMC Genomics. 2012;13:379. doi:10.1186/1471-2164-13-379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Keller A, Leidinger P, Steinmeyer F, Stahler C, Franke A, Hemmrich-Stanisak G, et al. Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing. Mult Scler. 2014;20(3):295–303. doi:10.1177/1352458513496343.

    Article  CAS  PubMed  Google Scholar 

  26. Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, Frese K, et al. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 2013;14(7):R78. doi:10.1186/gb-2013-14-7-r78.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Keller A, Leidinger P, Bauer A, Elsharawy A, Haas J, Backes C, et al. Toward the blood-borne miRNome of human diseases. Nat Methods. 2011;8(10):841–3. doi:10.1038/nmeth.1682.

    Article  CAS  PubMed  Google Scholar 

  28. Yang Q, Zheng Y, Zhu D. Diagnostic performance of microRNAs expression in prostate cancer. Tumour Biol. 2014. doi:10.1007/s13277-014-2351-9.

    Google Scholar 

  29. Santos JI, Teixeira AL, Dias F, Mauricio J, Lobo F, Morais A, et al. Influence of peripheral whole-blood microRNA-7 and microRNA-221 high expression levels on the acquisition of castration-resistant prostate cancer: evidences from in vitro and in vivo studies. Tumour Biol. 2014. doi:10.1007/s13277-014-1918-9.

    Google Scholar 

  30. Bryant RJ, Pawlowski T, Catto JW, Marsden G, Vessella RL, Rhees B, et al. Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 2012;106(4):768–74. doi:10.1038/bjc.2011.595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mahn R, Heukamp LC, Rogenhofer S, von Ruecker A, Muller SC, Ellinger J. Circulating microRNAs (miRNA) in serum of patients with prostate cancer. Urology. 2011;77(5):1265 e9–16. doi:10.1016/j.urology.2011.01.020.

    Article  Google Scholar 

  32. Chen ZH, Zhang GL, Li HR, Luo JD, Li ZX, Chen GM, et al. A panel of five circulating microRNAs as potential biomarkers for prostate cancer. Prostate. 2012;72(13):1443–52. doi:10.1002/pros.22495.

    Article  CAS  PubMed  Google Scholar 

  33. Keller A, Leidinger P, Borries A, Wendschlag A, Wucherpfennig F, Scheffler M, et al. miRNAs in lung cancer—studying complex fingerprints in patient’s blood cells by microarray experiments. BMC Cancer. 2009;9:353. doi:10.1186/1471-2407-9-353.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Griffiths-Jones S. miRBase: the microRNA sequence database. Methods Mol Biol. 2006;342:129–38.

    CAS  PubMed  Google Scholar 

  35. D’Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA. 1998;280(11):969–74.

    Article  PubMed  Google Scholar 

  36. Hsu SD, Tseng YT, Shrestha S, Lin YL, Khaleel A, Chou CH, et al. miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 2014;42(Database issue):D78–85. doi:10.1093/nar/gkt1266.

    Article  CAS  PubMed  Google Scholar 

  37. Bauer AS, Keller A, Costello E, Greenhalf W, Bier M, Borries A, et al. Diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis by measurement of microRNA abundance in blood and tissue. PLoS One. 2012;7(4), e34151. doi:10.1371/journal.pone.0034151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schroder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009;360(13):1320–8. doi:10.1056/NEJMoa0810084.

    Article  PubMed  Google Scholar 

  39. O’Brien B, Nichaman L, Browne JE, Levin DL, Prorok PC, Gohagan JK, et al. Coordination and management of a large multicenter screening trial: the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Control Clin Trials. 2000;21(6 Suppl):310S–28.

    Article  PubMed  Google Scholar 

  40. Zhu M, Chen Q, Liu X, Sun Q, Zhao X, Deng R, et al. lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J. 2014;281(16):3766–75. doi:10.1111/febs.12902.

    Article  CAS  PubMed  Google Scholar 

  41. Paradowska A, Fenic I, Konrad L, Sturm K, Wagenlehner F, Weidner W, et al. Aberrant epigenetic modifications in the CTCF binding domain of the IGF2/H19 gene in prostate cancer compared with benign prostate hyperplasia. Int J Oncol. 2009;35(1):87–96.

    Article  CAS  PubMed  Google Scholar 

  42. Berteaux N, Lottin S, Adriaenssens E, Van Coppenolle F, Leroy X, Coll J, et al. Hormonal regulation of H19 gene expression in prostate epithelial cells. J Endocrinol. 2004;183(1):69–78. doi:10.1677/joe.1.05696.

    Article  CAS  PubMed  Google Scholar 

  43. Hernandez JM, Elahi A, Clark CW, Wang J, Humphries LA, Centeno B, et al. miR-675 mediates downregulation of Twist1 and Rb in AFP-secreting hepatocellular carcinoma. Annals of surgical oncology Suppl. 2013;20 Suppl 3:S625–35. doi:10.1245/s10434-013-3106-3.

    Article  Google Scholar 

  44. Macleod KF. The RB, tumor suppressor: a gatekeeper to hormone independence in prostate cancer? J Clin Invest. 2010;120(12):4179–82. doi:10.1172/JCI45406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sharma A, Yeow WS, Ertel A, Coleman I, Clegg N, Thangavel C, et al. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J Clin Invest. 2010;120(12):4478–92. doi:10.1172/JCI44239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Watahiki A, Wang Y, Morris J, Dennis K, O’Dwyer HM, Gleave M, et al. MicroRNAs associated with metastatic prostate cancer. PLoS One. 2011;6(9), e24950. doi:10.1371/journal.pone.0024950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Han ZD, Zhang YQ, He HC, Dai QS, Qin GQ, Chen JH, et al. Identification of novel serological tumor markers for human prostate cancer using integrative transcriptome and proteome analysis. Med Oncol. 2012;29(4):2877–88. doi:10.1007/s12032-011-0149-9.

    Article  CAS  PubMed  Google Scholar 

  48. Leav I, Plescia J, Goel HL, Li J, Jiang Z, Cohen RJ, et al. Cytoprotective mitochondrial chaperone TRAP-1 as a novel molecular target in localized and metastatic prostate cancer. Am J Pathol. 2010;176(1):393–401. doi:10.2353/ajpath.2010.090521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nguyen MC, Tu GH, Koprivnikar KE, Gonzalez-Edick M, Jooss KU, Harding TC. Antibody responses to galectin-8, TARP and TRAP1 in prostate cancer patients treated with a GM-CSF-secreting cellular immunotherapy. Cancer Immunol Immunother. 2010;59(9):1313–23. doi:10.1007/s00262-010-0858-5.

    Article  CAS  PubMed  Google Scholar 

  50. Daniels G, Jha R, Shen Y, Logan SK, Lee P. Androgen receptor coactivators that inhibit prostate cancer growth. Am J Clin Exp Urol. 2014;2(1):62–70.

    PubMed  PubMed Central  Google Scholar 

  51. Waltering KK, Porkka KP, Jalava SE, Urbanucci A, Kohonen PJ, Latonen LM, et al. Androgen regulation of micro-RNAs in prostate cancer. Prostate. 2011;71(6):604–14. doi:10.1002/pros.21276.

    Article  CAS  PubMed  Google Scholar 

  52. Pan CX, Kinch MS, Kiener PA, Langermann S, Serrero G, Sun L, et al. PC cell-derived growth factor expression in prostatic intraepithelial neoplasia and prostatic adenocarcinoma. Clin Cancer Res: Off J Am Assoc Cancer Res. 2004;10(4):1333–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckart Meese.

Ethics declarations

Conflicts of interest

None

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Validated target genes of miRNAs miR-675, miR-1180, miR-1225-5p, miR-659, miR-708* and miR-221* (XLSX 9.31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leidinger, P., Hart, M., Backes, C. et al. Differential blood-based diagnosis between benign prostatic hyperplasia and prostate cancer: miRNA as source for biomarkers independent of PSA level, Gleason score, or TNM status. Tumor Biol. 37, 10177–10185 (2016). https://doi.org/10.1007/s13277-016-4883-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4883-7

Keywords

Navigation