Skip to main content

Advertisement

Log in

GRIM-19 inhibition induced autophagy through activation of ERK and HIF-1α not STAT3 in Hela cells

  • Original Article
  • Published:
Tumor Biology

Abstract

Gene associated with retinoid-interferon-induced mortality (GRIM-19), an important subunit of mitochondrial complex I, has been identified as a tumor suppressor, and its reduced expression has been reported to be associated with tumorigenesis and metastasis. Autophagy has been proposed as a protective mechanism for cell survival under various stresses, including chemotherapy. However, it remains unknown whether GRIM-19 is linked to autophagy and chemotherapy resistance. Here, we showed that suppression of GRIM-19 by shRNA enhanced cell-type-dependent autophagy by activating extracellular regulated protein kinase (ERK) and hypoxia inducible factor-1a (HIF-1a) in a reactive oxygen species (ROS)-mediated manner, and thereby conferred resistance to paclitaxel. Besides, the antioxidant N-acetyl-l-cysteine (NAC) and autophagy inhibitor 3-MA could in part overcome this resistance. We also found that GRIM-19 expression was significantly correlated with clinical stage and grade in patients with cervical cancers. Taken together, our results indicated that GRIM-19 inhibition induced autophagy and chemotherapy resistance, which could affect prognosis of cervical cancers. Our study has identified new function of GRIM-19 and its underlying mechanism, and it will provide possible avenues for therapeutic targeting in cervical cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Angell JE, Lindner DJ, Shapiro PS, Hofmann ER, Kalvakolanu DV. Identification of GRIM-19, a novel cell death-regulatory gene induced by the interferon-beta and retinoic acid combination, using a genetic approach. J Biol Chem. 2000;275:33416–26.

    Article  CAS  PubMed  Google Scholar 

  2. Lufei C, Ma J, Huang G, Zhang T, Novotny-Diermayr V, Ong CT. GRIM-19, a death-regulatory gene product, suppresses Stat3 activity via functional interaction. Embo J. 2003;22:1325–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang J, Yang J, Roy SK, Tininini S, Hu J, Bromberg JF, et al. The cell death regulator GRIM-19 is an inhibitor of signal transducer and activator of transcription 3. Proc Natl Acad Sci U S A. 2003;100:9342–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. He X, Cao X. Identification of alternatively spliced GRIM-19 mRNA in kidney cancer tissues. J Hum Genet. 2010;55:507–11.

    Article  CAS  PubMed  Google Scholar 

  5. Máximo V, Botelho T, Capela J, Soares P, Lima J, Taveira A, et al. Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hurthle cell) tumours of the thyroid. Br J Cancer. 2005;92:1892–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hao M, Shu Z, Sun H, Sun R, Wang Y, Liu T, et al. GRIM-19 expression is a potent prognostic marker in colorectal cancer. Hum Pathol. 2015;46:1815–20.

    Article  CAS  PubMed  Google Scholar 

  7. Liu Q, Wang L, Wang Z, Yang Y, Tian J, Liu G, et al. GRIM-19 opposes reprogramming of glioblastoma cell metabolism via HIF1α destabilization. Carcinogenesis. 2013;34:1728–36.

    Article  CAS  PubMed  Google Scholar 

  8. Fearnley IM, Carroll J, Shannon RJ, Runswick MJ, Walker JE, Hirst J. GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Biol Chem. 2001;276:38345–8.

    Article  CAS  PubMed  Google Scholar 

  9. Huang G, Lu H, Hao A, Ng DC, Ponniah S, Guo K, et al. GRIM-19, a cell death regulatory protein, is essential for assembly and function of mitochondrial complex I. Mol Cell Biol. 2004;24:8447–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen Y, Yuen WH, Fu J, Huang G, Melendez AJ, Ibrahim FB, et al. The mitochondrial respiratory chain controls intracellular calcium signaling and NFAT activity essential for heart formation in Xenopus laevis. Mol Cell Biol. 2007;27:6420–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen Y, Lu H, Liu Q, Huang G, Lim CP, Zhang L, et al. Function of GRIM-19, a mitochondrial respiratory chain complex I protein, in innate immunity. J Biol Chem. 2012;287:27227–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yeo WM, Isegawa Y, Chow VT. The U95 protein of human herpesvirus 6B interacts with human GRIM-19: silencing of U95 expression reduces viral load and abrogates loss of mitochondrial membrane potential. J Virol. 2008;82:1011–20.

    Article  CAS  PubMed  Google Scholar 

  13. Seo T, Lee D, Shim YS, Angell JE, Chidambaram NV, Kalvakolanu DV, et al. Viral interferon regulatory factor 1 of Kaposi’s sarcoma-associated herpesvirus interacts with a cell death regulator, GRIM19, and inhibits interferon/retinoic acid-induced cell death. J Virol. 2002;76:8797–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barnich N, Hisamatsu T, Aguirre JE, Xavier R, Reinecker HC, Podolsky DK. GRIM-19 interacts with nucleotide oligomerization domain 2 and serves as downstream effector of anti-bacterial function in intestinal epithelial cells. J Biol Chem. 2005;280:19021–6.

    Article  CAS  PubMed  Google Scholar 

  15. Levine B, Ranganathan R. Autophagy: snapshot of the network. Nature. 2010;466:38–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mukhopadhyay S, Panda PK, Sinha N, Das DN, Bhutia SK. Autophagy and apoptosis: where do they meet? Apoptosis. 2014;19:555–66.

    Article  CAS  PubMed  Google Scholar 

  17. Huang G, Chen Y, Lu H, Cao X. Coupling mitochondrial respiratory chain to cell death: an essential role of mitochondrial complex I in the interferon-beta and retinoic acid-induced cancer cell death. Cell Death Differ. 2007;14:327–37.

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Zhou R, Yuan X, Han N, Zhou S, Xu H, et al. DACH1 is a novel predictive and prognostic biomarker in hepatocellular carcinoma as a negative regulator of Wnt/β-catenin signaling. Oncotarget. 2015;6:8621–34.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chu Q, Han N, Yuan X, Nie X, Wu H, Chen Y, et al. DACH1 inhibits cyclin D1 expression, cellular proliferation and tumor growth of renal cancer cells. J Hematol Oncol. 2014;7:73.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Han N, Yuan X, Wu H, Xu H, Chu Q, Guo M, et al. DACH1 inhibits lung adenocarcinoma invasion and tumor growth by repressing CXCL5 signaling. Oncotarget. 2015;6:5877–88.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Andreux PA, Houtkooper RH, Auwerx J. Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discov. 2013;12:465–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stefanatos R, Sanz A. Mitochondrial complex I: a central regulator of the aging process. Cell Cycle. 2011;10:1528–32.

    Article  CAS  PubMed  Google Scholar 

  23. Okon IS, Zou MH. Mitochondrial ROS and cancer drug resistance: implications for therapy. Pharmacol Res. 2015;100:170–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Okon IS, Coughlan KA, Zhang M, Wang Q, Zou MH. Gefitinib-mediated reactive oxygen specie (ROS) instigates mitochondrial dysfunction and drug resistance in lung cancer cells. J Biol Chem. 2015;290:9101–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009;8:579–91.

    Article  CAS  PubMed  Google Scholar 

  26. He X, Zhou A, Lu H, Chen Y, Huang G, Yue X, et al. Suppression of mitochondrial complex I influences cell metastatic properties. PLoS One. 2013;8:e61677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, et al. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis. 2013;4:e838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yokoyama T, Kondo Y, Kondo S. Roles of mTOR and STAT3 in autophagy induced by telomere 3′ overhang-specific DNA oligonucleotides. Autophagy. 2007;3:496–8.

    Article  CAS  PubMed  Google Scholar 

  29. Peng X, Gong F, Chen Y, Jiang Y, Liu J, Yu M, et al. Autophagy promotes paclitaxel resistance of cervical cancer cells: involvement of Warburg effect activated hypoxia-induced factor 1-α-mediated signaling. Cell Death Dis. 2014;5:e1367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was funded by Wuhan Yellow Crane Medical Talent Program Grant No. 2015-12 and by the supporting program of the Ministry of Human Resource of China Oversea Returned scholars, and the National Natural Science Foundation of China (Grant No. 81572608).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuelian He.

Ethics declarations

Conflicts of interest

None

Additional information

Xin Yue and Peiwei Zhao have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, X., Zhao, P., Wu, K. et al. GRIM-19 inhibition induced autophagy through activation of ERK and HIF-1α not STAT3 in Hela cells. Tumor Biol. 37, 9789–9796 (2016). https://doi.org/10.1007/s13277-016-4877-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4877-5

Keywords

Navigation