Skip to main content
Log in

ERK inhibition sensitizes cancer cells to oleanolic acid-induced apoptosis through ERK/Nrf2/ROS pathway

  • Original Article
  • Published:
Tumor Biology

Abstract

Oleanolic acid (OA) is a natural triterpenoid that is widely distributed in edible and medicinal plants. OA exerts anti-tumor activity on a wide range of cancer cells primarily through inducing apoptosis. Dysregulated ERK signaling is closely complicated in the biology of cancer, such as metastasis, proliferation, and survival, and it can be activated by various stimuli. In this study, we found that OA induced the activation of ERK in cancer cells. ERK activation compromised the apoptosis induced by OA. Blocking ERK activation by U0126 or siRNAs was able to potentiate the pro-apoptotic activity of OA on cancer cells. OA was shown to promote ERK-dependent Nrf2 expression in cancer cells, and in turn, Nrf2 expression was able to suppress OA-induced ROS generation. Blockade of Nrf2 expression was able to increase ROS levels and apoptotic death in cancer cells. In conclusion, we provided evidences that ERK activation is a mechanism underlying the resistance of cancer cells to OA-induced apoptosis and targeting ERK is a promising strategy to enhance the anti-tumor efficacy of OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. Pollier J, Goossens A. Oleanolic acid. Phytochemistry. 2012;77:10–5.

    Article  CAS  PubMed  Google Scholar 

  2. Wei J, Liu M, Liu H, Wang H, Wang F, Zhang Y, et al. Oleanolic acid arrests cell cycle and induces apoptosis via ROS-mediated mitochondrial depolarization and lysosomal membrane permeabilization in human pancreatic cancer cells. J Appl Toxicol. 2012.

  3. Liu J, Wu N, Ma LN, Zhong JT, Liu G, Zheng LH, et al. p38 MAPK signaling mediates mitochondrial apoptosis in cancer cells induced by oleanolic acid. Asian Pac J Cancer Prev. 2014;15(11):4519–25.

    Article  PubMed  Google Scholar 

  4. Liu J, Zheng L, Zhong J, Wu N, Liu G, Lin X. Oleanolic acid induces protective autophagy in cancer cells through the JNK and mTOR pathways. Oncol Rep. 2014;32(2):567–72. doi:10.3892/or.2014.3239.

    PubMed  Google Scholar 

  5. Liu J, Wu N, Ma L, Liu M, Liu G, Zhang Y, et al. Oleanolic acid suppresses aerobic glycolysis in cancer cells by switching pyruvate kinase type M isoforms. PLoS One. 2014;9(3):e91606. doi:10.1371/journal.pone.0091606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu J, Zheng L, Ma L, Wang B, Zhao Y, Wu N, et al. Oleanolic acid inhibits proliferation and invasiveness of Kras-transformed cells via autophagy. J Nutr Biochem. 2014;25(11):1154–60. doi:10.1016/j.jnutbio.2014.06.006.

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Zheng L, Wu N, Ma L, Zhong J, Liu G, et al. Oleanolic acid induces metabolic adaptation in cancer cells by activating the AMP-activated protein kinase pathway. J Agric Food Chem. 2014;62(24):5528–37. doi:10.1021/jf500622p.

    Article  CAS  PubMed  Google Scholar 

  8. Guo G, Yao W, Zhang Q, Bo Y. Oleanolic acid suppresses migration and invasion of malignant glioma cells by inactivating MAPK/ERK signaling pathway. PLoS One. 2013;8(8):e72079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lim JL, Wilhelmus MM, de Vries HE, Drukarch B, Hoozemans JJ, van Horssen J. Antioxidative defense mechanisms controlled by Nrf2: state-of-the-art and clinical perspectives in neurodegenerative diseases. Arch Toxicol. 2014;88(10):1773–86. doi:10.1007/s00204-014-1338-z.

    Article  CAS  PubMed  Google Scholar 

  10. Fujisawa T, Takeda K, Ichijo H. ASK family proteins in stress response and disease. Mol Biotechnol. 2007;37(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  11. Yi LT, Li J, Liu BB, Luo L, Liu Q, Geng D. BDNF-ERK-CREB signalling mediates the role of miR-132 in the regulation of the effects of oleanolic acid in male mice. J Psychiatry Neurosci. 2014;39(5):348–59.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang X, Chen HL, Liu JZ, Liao N, Yu WH, Zhang XD, et al. Protective effect of oleanolic acid against beta cell dysfunction and mitochondrial apoptosis: crucial role of ERK-NRF2 signaling pathway. J Biol Regul Homeost Agents. 2013;27(1):55–67.

    PubMed  Google Scholar 

  13. Chen JY, Zhang L, Zhang H, Su L, Qin LP. Triggering of p38 MAPK and JNK signaling is important for oleanolic acid-induced apoptosis via the mitochondrial death pathway in hypertrophic scar fibroblasts. Phytother Res. 2014;28(10):1468–78. doi:10.1002/ptr.5150.

    Article  CAS  PubMed  Google Scholar 

  14. Feng J, Zhang P, Chen X, He G. PI3K and ERK/Nrf2 pathways are involved in oleanolic acid-induced heme oxygenase-1 expression in rat vascular smooth muscle cells. J Cell Biochem. 2011;112(6):1524–31. doi:10.1002/jcb.23065.

    Article  CAS  PubMed  Google Scholar 

  15. Wang X, Ye XL, Liu R, Chen HL, Bai H, Liang X, et al. Antioxidant activities of oleanolic acid in vitro: possible role of Nrf2 and MAP kinases. Chem Biol Interact. 2010;184(3):328–37. doi:10.1016/j.cbi.2010.01.034.

    Article  CAS  PubMed  Google Scholar 

  16. Ko JK, Auyeung KK. Target-oriented mechanisms of novel herbal therapeutics in the chemotherapy of gastrointestinal cancer and inflammation. Curr Pharm Des. 2013;19(1):48–66.

    CAS  PubMed  Google Scholar 

  17. Ma J, Han LZ, Liang H, Mi C, Shi H, Lee JJ, et al. Celastrol inhibits the HIF-1alpha pathway by inhibition of mTOR/p70S6K/eIF4E and ERK1/2 phosphorylation in human hepatoma cells. Oncol Rep. 2014;32(1):235–42. doi:10.3892/or.2014.3211.

    CAS  PubMed  Google Scholar 

  18. Zeng KW, Yu Q, Song FJ, Liao LX, Zhao MB, Dong X, et al. Deoxysappanone B, a homoisoflavone from the Chinese medicinal plant Caesalpinia sappan L., protects neurons from microglia-mediated inflammatory injuries via inhibition of IkappaB kinase (IKK)-NF-kappaB and p38/ERK MAPK pathways. Eur J Pharmacol. 2015;748:18–29. doi:10.1016/j.ejphar.2014.12.013.

    Article  CAS  PubMed  Google Scholar 

  19. Lim JH, Kwon TK. Curcumin inhibits phorbol myristate acetate (PMA)-induced MCP-1 expression by inhibiting ERK and NF-kappaB transcriptional activity. Food Chem Toxicol. 2010;48(1):47–52. doi:10.1016/j.fct.2009.09.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from National Natural Sciences Foundation of China (nos. 81502065, 81573137, and 31501142), China Postdoctoral Science Foundation Funded Project (2015M580574), Natural Sciences Foundation of Shandong Province (ZR2014HQ009), Special Scientific Research Funds for Central Non-profit Institutes, Chinese Academy of Fishery Sciences (2014B01YQ01), 863 High Technology Project (No. 2014AA093503), and Young Teacher Training Program for Innovation Team in Medical College of Qingdao University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lanhong Zheng or Hui Liang.

Ethics declarations

Conflicts of interest

None

Additional information

Jia Liu and Leina Ma contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Ma, L., Chen, X. et al. ERK inhibition sensitizes cancer cells to oleanolic acid-induced apoptosis through ERK/Nrf2/ROS pathway. Tumor Biol. 37, 8181–8187 (2016). https://doi.org/10.1007/s13277-015-4668-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4668-4

Keywords

Navigation