Skip to main content

Advertisement

Log in

Nutrient deprivation-related OXPHOS/glycolysis interconversion via HIF-1α/C-MYC pathway in U251 cells

  • Original Article
  • Published:
Tumor Biology

Abstract

Although the Warburg effect is a dominant metabolic phenotype observed in cancers, the metabolic changes and adaptation occurring in tumors have been demonstrated to extend beyond the Warburg effect and thus considered a secondary effect to the transformation process of carcinogenesis, including nutritional deficiencies. However, the role of nutritional deficiencies in this metabolic reprogramming (e. g., oxidative phosphorylation (OXPHOS)/glycolysis interconversion) is not completely known yet. Here, we showed that under regular culture condition, the proliferation of U251 cells, but not other tumor cell lines, preferentially performed the Warburg effect and was remarkably inhibited by oxamic acid which can inhibit the activity of lactate dehydrogenase (LDH); whereas under serum starvation, glycolysis was depressed, tricarboxylic acid cycle (TCA) was enhanced, and the activity of OXPHOS was reinforced to maintain cellular ATP content in a high level, but interestingly, we observed a decreased expression of reactive oxygen species (ROS). Moreover, the upregulated activity of mitochondrial complex I was confirmed by Western blots and showed that the mitochondrial-related protein, NDUFA9, NDUFB8, ND1, and VDAC1 were remarkably increased after serum starved. Mechanistically, nutritional deficiencies could reduce hypoxia-inducible factor α (HIF-1α) protein expression to increase C-MYC protein level, which in turn increased nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM) transcription to enhance the activity of OXPHOS, suggesting that metabolic reprogramming by the changes of microenvironment during the carcinogenesis can provide some novel therapeutic clues to traditional cancer treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moreno-Sanchez R, Marin-Hernandez A, Saavedra E, Pardo JP, Ralph SJ, Rodriguez-Enriquez S. Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism. Int J Biochem Cell Biol. 2014;50:10–23. doi:10.1016/j.biocel.2014.01.025.

    Article  CAS  PubMed  Google Scholar 

  2. Bustamante E, Morris HP, Pedersen PL. Energy metabolism of tumor cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J Biol Chem. 1981;256(16):8699–704.

    CAS  PubMed  Google Scholar 

  3. Diaz-Ruiz R, Uribe-Carvajal S, Devin A, Rigoulet M. Tumor cell energy metabolism and its common features with yeast metabolism. Biochim Biophys Acta. 2009;1796(2):252–65. doi:10.1016/j.bbcan.2009.07.003.

    CAS  PubMed  Google Scholar 

  4. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.

    Article  CAS  PubMed  Google Scholar 

  5. Nakajima EC, Van Houten B. Metabolic symbiosis in cancer: refocusing the Warburg lens. Mol Carcinog. 2013;52(5):329–37. doi:10.1002/mc.21863.

    Article  CAS  PubMed  Google Scholar 

  6. Solaini G, Sgarbi G, Baracca A. Oxidative phosphorylation in cancer cells. Biochim Biophys Acta. 2011;1807(6):534–42. doi:10.1016/j.bbabio.2010.09.003.

    Article  CAS  PubMed  Google Scholar 

  7. Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG, Chiavarina B, et al. Ketones and lactate “fuel” tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle. 2010;9(17):3506–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bashan N, Burdett E, Hundal HS, Klip A. Regulation of glucose transport and GLUT1 glucose transporter expression by O2 in muscle cells in culture. Am J Physiol. 1992;262(3 Pt 1):C682–90.

    CAS  PubMed  Google Scholar 

  9. Johnson MA, Vidoni S, Durigon R, Pearce SF, Rorbach J, He J, et al. Amino acid starvation has opposite effects on mitochondrial and cytosolic protein synthesis. PLoS One. 2014;9(4):e93597. doi:10.1371/journal.pone.0093597.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xie J, Wu H, Dai C, Pan Q, Ding Z, Hu D, et al. Beyond Warburg effect—dual metabolic nature of cancer cells. Sci Rep. 2014;4:4927. doi:10.1038/srep04927.

    PubMed  PubMed Central  Google Scholar 

  11. Chen M, Huang J, Yang X, Liu B, Zhang W, Huang L, et al. Serum starvation induced cell cycle synchronization facilitates human somatic cells reprogramming. PLoS One. 2012;7(4):e28203. doi:10.1371/journal.pone.0028203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cooper S. Reappraisal of serum starvation, the restriction point, G0, and G1 phase arrest points. FASEB J. 2003;17(3):333–40. doi:10.1096/fj.02-0352rev.

    Article  CAS  PubMed  Google Scholar 

  13. Signorile A, Micelli L, De Rasmo D, Santeramo A, Papa F, Ficarella R, et al. Regulation of the biogenesis of OXPHOS complexes in cell transition from replicating to quiescent state: involvement of PKA and effect of hydroxytyrosol. Biochim Biophys Acta. 2014;1843(4):675–84. doi:10.1016/j.bbamcr.2013.12.017.

    Article  CAS  PubMed  Google Scholar 

  14. Kanai M, Iba S, Okada R, Tashiro E, Imoto M. Oligomycin induced the proteasomal degradation of cyclin D1 protein. J Antibiot (Tokyo). 2009;62(8):425–9. doi:10.1038/ja.2009.47.

    Article  CAS  Google Scholar 

  15. Rodriguez-Paez L, Chena-Taboada MA, Cabrera-Hernandez A, Cordero-Martinez J, Wong C. Oxamic acid analogues as LDH-C4-specific competitive inhibitors. J Enzyme Inhib Med Chem. 2011;26(4):579–86. doi:10.3109/14756366.2011.566221.

    Article  CAS  PubMed  Google Scholar 

  16. Sweet S, Singh G. Accumulation of human promyelocytic leukemic (HL-60) cells at two energetic cell cycle checkpoints. Cancer Res. 1995;55(22):5164–7.

    CAS  PubMed  Google Scholar 

  17. Kurbacher CM, Cree IA. Chemosensitivity testing using microplate adenosine triphosphate-based luminescence measurements. Methods Mol Med. 2005;110:101–20. doi:10.1385/1-59259-869-2:101.

    CAS  PubMed  Google Scholar 

  18. Vives-Bauza C, Yang L, Manfredi G. Assay of mitochondrial ATP synthesis in animal cells and tissues. Methods Cell Biol. 2007;80:155–71. doi:10.1016/s0091-679x(06)80007-5.

    Article  CAS  PubMed  Google Scholar 

  19. Yu M, Dai J, Huang W, Jiao Y, Liu L, Wu M, et al. hMTERF4 knockdown in HeLa cells results in sub-G1 cell accumulation and cell death. Acta Biochim Biophys Sin (Shanghai). 2011;43(5):372–9. doi:10.1093/abbs/gmr020.

    Article  CAS  Google Scholar 

  20. Zhang E, Li X, Zhang S, Chen L, Zheng X. Cell cycle synchronization of embryonic stem cells: effect of serum deprivation on the differentiation of embryonic bodies in vitro. Biochem Biophys Res Commun. 2005;333(4):1171–7. doi:10.1016/j.bbrc.2005.05.200.

    Article  CAS  PubMed  Google Scholar 

  21. Hsiao YP, Lai WW, Wu SB, Tsai CH, Tang SC, Chung JG, et al. Triggering apoptotic death of human epidermal keratinocytes by malic acid: involvement of endoplasmic reticulum stress- and mitochondria-dependent signaling pathways. Toxins (Basel). 2015;7(1):81–96. doi:10.3390/toxins7010081.

    Article  Google Scholar 

  22. Nazmara Z, Salehnia M, HosseinKhani S. Mitochondrial distribution and ATP content of vitrified, in vitro matured mouse oocytes. Avicenna J Med Biotechnol. 2014;6(4):210–7.

    PubMed  PubMed Central  Google Scholar 

  23. Xiong W, Huang W, Jiao Y, Ma J, Yu M, Ma M, et al. Production, purification and characterization of mouse monoclonal antibodies against human mitochondrial transcription termination factor 2 (MTERF2). Protein Expr Purif. 2012;82(1):11–9. doi:10.1016/j.pep.2011.10.012.

    Article  CAS  PubMed  Google Scholar 

  24. Ratcliffe PJ. From erythropoietin to oxygen: hypoxia-inducible factor hydroxylases and the hypoxia signal pathway. Blood Purif. 2002;20(5):445–50.

    Article  CAS  PubMed  Google Scholar 

  25. Semenza GL, Rue EA, Iyer NV, Pang MG, Kearns WG. Assignment of the hypoxia-inducible factor 1alpha gene to a region of conserved synteny on mouse chromosome 12 and human chromosome 14q. Genomics. 1996;34(3):437–9. doi:10.1006/geno.1996.0311.

    Article  CAS  PubMed  Google Scholar 

  26. He M, Wang QY, Yin QQ, Tang J, Lu Y, Zhou CX, et al. HIF-1alpha downregulates miR-17/20a directly targeting p21 and STAT3: a role in myeloid leukemic cell differentiation. Cell Death Differ. 2013;20(3):408–18. doi:10.1038/cdd.2012.130.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, et al. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell. 2007;11(5):407–20. doi:10.1016/j.ccr.2007.04.001.

    Article  CAS  PubMed  Google Scholar 

  28. Kim J, Lee JH, Iyer VR. Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS One. 2008;3(3):e1798. doi:10.1371/journal.pone.0001798.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li F, Wang Y, Zeller KI, Potter JJ, Wonsey DR, O’Donnell KA, et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol. 2005;25(14):6225–34. doi:10.1128/mcb.25.14.6225-6234.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu J, Wang Q, Chen N, Sun Y, Wang X, Wu L, et al. Mitochondrial transcription factor A regulated ionizing radiation-induced mitochondrial biogenesis in human lung adenocarcinoma A549 cells. J Radiat Res. 2013;54(6):998–1004. doi:10.1093/jrr/rrt046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20. doi:10.1016/j.cmet.2007.10.002.

    Article  CAS  PubMed  Google Scholar 

  32. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33. doi:10.1126/science.1160809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. doi:10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  34. Chen G, Dai J, Tan S, Meng S, Liu Z, Li M, et al. MTERF1 regulates the oxidative phosphorylation activity and cell proliferation in HeLa cells. Acta Biochim Biophys Sin (Shanghai). 2014;46(6):512–21. doi:10.1093/abbs/gmu029.

    Article  CAS  Google Scholar 

  35. Wu H, Ding Z, Hu D, Sun F, Dai C, Xie J, et al. Central role of lactic acidosis in cancer cell resistance to glucose deprivation-induced cell death. J Pathol. 2012;227(2):189–99. doi:10.1002/path.3978.

    Article  CAS  PubMed  Google Scholar 

  36. Kianercy A, Veltri R, Pienta KJ. Critical transitions in a game theoretic model of tumour metabolism. Interface Focus. 2014;4(4):20140014. doi:10.1098/rsfs.2014.0014.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kennedy KM, Dewhirst MW. Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol. 2010;6(1):127–48. doi:10.2217/fon.09.145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank all the members of our laboratory for the encouragement and help in this study. This work was financially supported by the National Natural Science Foundation of China (no. 31260276, no. 31160237, and no. 81271330), the talent program of Yunnan Province (no. W8110305), and the Yunnan Province Science and Technology Innovation Team (no. 2011CI123)

Authors’ contributions

ZJL, YS, and MY designed the experiments with valuable help from QHC, MZL, HUH and ZJL performed and analyzed data with valuable help from ST and LL, and ZJL wrote the manuscript. ZJL and MY oversaw the overall project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Yu.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Sun, Y., Tan, S. et al. Nutrient deprivation-related OXPHOS/glycolysis interconversion via HIF-1α/C-MYC pathway in U251 cells. Tumor Biol. 37, 6661–6671 (2016). https://doi.org/10.1007/s13277-015-4479-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4479-7

Keywords

Navigation